CHEMISTRY OF CATALYTIC PROCESSES

Bruce C. Gates James R. Katzer G. C. A. Schuit

CHEMISTRY OF CATALYTIC PROCESSES

Bruce C. Gates
James R. Katzer
G. C. A. Schuit

University of Delaware Center for Catalytic Science and Technology Department of Chemical Engineering

McGraw-Hill Book Company

New York St. Louis San Francisco Auckland Bogotá Düsseldorf Johannesburg London Madrid Mexico Montreal New Delhi Panama Paris São Paulo Singapore Sydney Tokyo Toronto

CHEMISTRY OF CATALYTIC PROCESSES

Copyright © 1979 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of America. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

4567890 FGRFGR 83210

This book was set in Times Roman.

The editors were Rose Ciofalo, Douglas J. Marshall, and Bob Leap; the production supervisor was Milton J. Heiberg.

The drawings were done by Lorraine Turner and Judy Katzer.

Fairfield Graphics was printer and binder.

Library of Congress Cataloging in Publication Data

Gates, Bruce C

Chemistry of catalytic processes.

(McGraw-Hill series in chemical engineering)
Includes bibliographical references and index.

1. Catalysis. I. Katzer, James R., date joint author. II. Schuit, G. C. A., joint author. III. Title.
TP156.C35G37 660.2'9'95 77-16112
ISBN 0-07-022987-2

McGraw-Hill Chemical Engineering Series

Editorial Advisory Board

James J. Carberry, Professor of Chemical Engineering, University of Notre Dame James R. Fair, Director, Engineering Technology, Monsanto Company, Missouri Max S. Peters, Dean of Engineering, University of Colorado William R. Schowalter, Professor of Chemical Engineering, Princeton University James Wei, Professor of Chemical Engineering, Massachusettes Institute of Technology

Building the Literature of a Profession

Fifteen prominent chemical engineers first met in New York more than fifty years ago to plan a continuing literature for their rapidly growing profession. From industry came such pioneer practitioners as Leo H. Baekeland, Arthur D. Little, Charles L. Reese, John V. N. Dorr, M. C. Whittaker, and R. S. McBride. From the universities came such eminent educators as William H. Walker, Alfred H. White, D. D. Jackson, J. H. James, Warren K. Lewis, and Harry A. Curtis. H. C. Parmelee, then editor of *Chemical and Metallurgical Engineering*, served as chairman and was joined subsequently by S. D. Kirkpatrick as consulting editor.

After several meetings, this committee submitted its report to the McGRAW-HILL Book Company in September 1925. In the report were detailed specifications for a correlated series of more than a dozen texts and reference books which have since become the McGRAW-HILL Series in Chemical Engineering and which became the cornerstone

of the chemical engineering curriculum.

From this beginning there has evolved a series of texts surpassing by far the scope and longevity envisioned by the founding Editorial Board. The McGRAW-HILL Series in Chemical Engineering stands as a unique historical record of the development of chemical engineering education and practice. In the series one finds the milestones of the subject's evolution: industrial chemistry, stoichiometry, unit operations and processes, thermodynamics, kinetics, and transfer operations.

Chemical engineering is a dynamic profession, and its literature continues to evolve. McGRAW-HILL and its consulting editors remain committed to a publishing policy that will serve, and indeed lead, the needs of the chemical engineering profession during the years to come.

The Series

Bailey and Ollis: Biochemical Engineering Fundamentals
Bennett and Myers: Momentum, Heat, and Mass Transfer

Beveridge and Schechter: Optimization: Theory and Practice

Carberry: Chemical and Catalytic Reaction Engineering

Churchill: The Interpretation and Use of Rate Data—The Rate Concept Clarke and Davidson: Manual for Process Engineering Calculations Coughanowr and Koppel: Process Systems Analysis and Control

Danckwerts: Gas Liquid Reactions

Gates, Katzer, and Schuit: Chemistry of Catalytic Processes

Harriott: Process Control

Johnson: Automatic Process Control

Johnstone and Thring: Pilot Plants, Models, and Scale-up Methods in Chemical

Katz, Cornell, Kobayashi, Poettmann, Vary, Elenbaas, and Weinaug: Handbook of Natural Gas Engineering

King: Separation Processes

Knudsen and Katz: Fluid Dynamics and Heat Transfer Lapidus: Digital Computation for Chemical Engineers

Luyben: Process Modeling, Simulation, and Control for Chemical Engineers

McCabe and Smith, J. C.: Unit Operations of Chemical Engineering

Mickley, Sherwood, and Reed: Applied Mathematics in Chemical Engineering

Nelson: Petroleum Refinery Engineering

Perry and Chilton (Editors): Chemical Engineers' Handbook

Peters: Elementary Chemical Engineering

Peters and Timmerhaus: Plant Design and Economics for Chemical Engineers

Reed and Gubbins: Applied Statistical Mechanics

Reid, Prausnitz, and Sherwood: The Properties of Gases and Liquids

Sherwood, Pigford, and Wilke: Mass Transfer

Slattery: Momentum, Energy, and Mass Transfer in Continua

Smith, B. D.: Design of Equilibrium Stage Processes

Smith, J. M.: Chemical Engineering Kinetics

Smith, J. M., and Van Ness: Introduction to Chemical Engineering Thermodynamics

Thompson and Leckler: Introduction to Chemical Engineering

Treybal: Liquid Extraction

Trevbal: Mass Transfer Operations

Van Winkle: Distillation

Volk: Applied Statistics for Engineers

Walas: Reaction Kinetics for Chemical Engineers

Wei, Russell, and Swartzlander: The Structure of the Chemical Processing Industries

Whitwell and Toner: Conservation of Mass and Energy

For Eva, Judy, and Jutta

publish is X and Y Dollies | Standauly strengers Zeather

Pillinston, I for terious and chape-one-citie pataring

Because of its economic importance, catalysis is one of the most intensely pursued subjects in applied chemistry and chemical engineering. It is complex, encompassing solid and surface structure, reaction mechanism, and analysis and design of chemical reactors. The complexity makes the subject difficult to teach and write about with depth and coherence, and most practitioners have learned their trade almost entirely from on-the-job training. We believe that there is need for a book about catalysis to convey what the science and practice of the subject are really like. We hope to have begun to meet this need by writing in detail about some of the most important industrial applications of catalysis, attempting to integrate the science and engineering in a way reflecting their integration in practice.

The book is not meant to be comprehensive but to provide a representative cross section of applied catalysis and some insight into catalytic practice. In particular, we have attempted to illustrate how the chemistry constrains the engineering design and how the design limitations, at the same time, restrict the choice of chemical variables such as catalyst composition. We hope that the book demonstrates the complexity of industrial catalysts, which have been developed through years of empirical testing to offer surfaces with combinations of functions just suited to the desired reactions.

There are five chapters, each concerned with an industrial process or class of processes, namely, catalytic cracking, transition-metal-complex catalysis, catalytic reforming, partial oxidation of hydrocarbons (as illustrated by ammoxidation), and hydrodesulfurization. The processess were chosen because they are industrially important and illustrate the major classes of catalysts: acids, transition metals, metal oxides, and metal sulfides. The sequence proceeds roughly from the best-understood to the least well understood chemistry. The coherence is intended to be provided by the chemistry rather than the engineering, and the engineering subjects are introduced as they arise in this context. We believe that there is value in the quantitative illustration of the engineering

methods, and our intention is that this book, with its summaries of the available processing data, will complement the existing books on chemical reaction engineering.

Each chapter is arranged roughly along the following lines: the process is introduced with a brief statement of the catalytic chemistry and process engineering; the chemistry is then presented in detail; and the engineering follows, with quantitative examples included to illustrate design methods.

The final manuscript evolved from notes for a graduate course and an intensive one-week short course taught at the University of Delaware. Believing that others may find this useful as a textbook, we have included problems with each chapter. The background information required for understanding the book includes standard undergraduate chemistry and the basic concepts of catalysis and chemical reaction engineering. Graduate students of chemical engineering and of technical chemistry should be adequately prepared for it, although an instructor's guidance will be helpful in directing students to the appropriate fundamentals for review. Students of chemistry who lack any experience with chemical engineering would profit from working through an introduction to reaction engineering such as Denbigh and Turner's "Chemical Reactor Theory," Cambridge University Press, 1971. Russell and Denn's "Introduction to Chemical Engineering Analysis," Wiley, 1972, is also recommended.

Without the help and criticisms of our students and colleagues, this book could not have been written. The comments of the industrial chemists and engineers who attended our annual short course have been especially helpful in eliminating errors and correcting false impressions of commercial practice. Many colleagues have helped us, and we especially thank W. H. Manogue, who offered invaluable comments, and J. H. Olson, who prepared the final section of Chap. 1, which is concerned with the reaction engineering of catalytic cracking. We are very grateful to our department chairman, A. B. Metzner, for his encouragement and stimulation during the preparation of the manuscript. We also acknowledge the Fulbright-Kommission in Bonn for the fellowship that allowed B. C. Gates time to work the manuscript into final form.

catalytic reloranties partial oxidation of hydrocarbons (as illustrated by ammeridation), and hydrodesulfursation, the processess were chosen because

Bruce C. Gates

James R. Katzer

G. C. A. Schuit

CONTENTS

Preface	xv
Structures of outub tic composits	
Cracking	1
Introduction	1
	1
Processes Reactions	5
	5
Catalysts Catalysts	6
Catalytic chemistry *** ********************************	0
Cracking reactions	6
Introduction metabolism notices to	8
Thermal cracking	
Catalytic cracking	10
Properties of carbonium ions Reactions of carbonium ions	
Characterization of acidity Mechanisms of carbonium-ion	
reactions Carbonium ions on surfaces Details of catalytic	
cracking chemistry	45
Summary of catalytic cracking chemistry	45
Cracking catalysts	46
Introduction	46
Amorphous catalysts	46
Preparation and general properties Chemical properties	140
Crystalline (Zeolite) catalysts	49
Introduction Synthesis X and Y zeolite structures Cation	
positions in X and Y zeolites Mordenite structure Zeolite	
surface chemistry	
Relations between surface properties and catalytic activity	68
Silica-alumina / Zeolites	
Performance of Silica-Alumina and Zeolite catalysts	78
Catalyst activity	78
Catalyst selectivity	80
Diffusional limitations and shape-selective catalysis	85
	ix

X CONTENTS

Reaction engineering of catalytic cracking The Riser-tube reactor	89 90
The regenerator	99
	102
Notation	104
References	104
Problems	107
Catalysis by Transition-Metal Complexes: The Wacker, Vinyl Acetate, Oxo, Methanol Carbonylation, and	
Ziegler-Natta Processes	112
Introduction	112
Catalysts and processes	112
Chemical bonding in transition-metal complexes	114
Classification of ligands	115
Ligand surroundings of a metal	118
Frontier theory	120
Structures of catalytic complexes	124
Reactions and catalytic properties of organometallic complexes	126
Ligand exchange	126
Oxidative addition	127
The insertion reaction	127
Processes 4 seasons	128
The Wacker process: ethylene oxidation to acetaldehyde	128
Reactions and catalysts	128
Reaction kinetics	129
Product distribution	130
Reaction mechanism	130
Process design	135
Vinyl Acetate synthesis	137
Reactions and catalysts	137
Reaction kinetics	138
Reaction mechanism	138
Process design	139
The Oxo process: hydroformylation of olefins	140
Reactions and catalysts	140
Reaction kinetics	141
Product distribution	142
Reaction mechanism	144
Process design	146
Methanol carbonylation	147
Reaction and catalyst	147
Reaction kinetics	148
Product distribution	148
Reaction mechanism	148
Process design 150 all to \$2 hours and that A wall to a particularly	150
The Ziegler-Natta process: stereospecific polymerization of α-olefins	150
Reactions and catalysts	150
Reactions and catalysts Reaction kinetics	152
ALLOWING THREETED	100

	Product distribution	157
	Reaction mechanism	158
	Process design	166
	Process engineering and multiphase reactors	170
	Mass-transfer influence	170
	Homogeneous catalysis	176
	Multiphase reactors and catalyst design	176
	Catalyst solutions in pores of solids	177
	Catalysis by matrix-bound complexes	177
	Notation A second secon	179
	References	180
	Problems	182
		102
3	Reforming	184
	manifestation and the second of the notation of the second	101
	Introduction	184
	Reactions	184
	Thermodynamics	187
	Kinetics Rough to the second s	188
	Catalysts	189
	Operating conditions	190
	Reactor design	191
	Catalytic chemistry	193
	Transition metals and their catalytic activity	193
	Introduction American Services	193
	Bonding in metals	194
	Bonding at metal surfaces	201
	Reactions of Chemisorbed species	206
	Alloys	213
	Phase behavior Surface compositions Electronic structures	
	Catalytic activity	
	Theoretical considerations	227
	Current research	235
	Reforming catalysts	236
	The metal	236
	Preparation techniques Dispersion of metals in supported	450
	catalysts Effects of crystallite size and support on catalytic	
	activity Catalyst poisoning	
	The Alumina support	249
	Preparation Oxides with cubic-close-packed structures	277
	Positions of the Al ³⁺ and H ⁺ ions in the close-packed anion	
	structures The intermediate aluminum oxides Acidity of	
	aluminas	
	Reforming reactions	260
	Metal-catalyzed reactions	260
	Hydrogenation-dehydrogenation reactions Aromati.:ation	200
	reactions Isomerization, dehydrocyclization, and	
	hydrogenolysis reactions	
	TO TWO OF CHILD AND A CHICAGO	

	Alumina-catalyzed reactions	275
	Isomerization Hydrocracking	
	Bifunctional catalysis of reforming reactions	280
	The reaction scheme Isomerization Dehydrocyclization	
	Catalyst deactivation by carbonaceous residues	
	Process engineering	289
	Catalyst design and operation	289
	Reaction engineering	294
	Introduction	294
	Reactor modeling	. 294
	Notation	311
	References	313
	Problems	318
4	Partial Oxidation of Hydrocarbons: The Ammoxidation	
-	of Propylene	325
	of Fropylene	Jad
	Introduction	325
	The chemistry of oxidation	329
	Noncatalytic oxidation application	329
	Oxidation catalyzed by coordination complexes of transition metals	331
	Oxidation catalyzed by surfaces of oxides	337
	Hydrocarbon surface intermediates	337
	Bonding of surface intermediates	341
	Structures of oxide surfaces	343
	The introduction of oxygen: the Mars-van Krevelen mechanism	344
	Summary	349
	Ammoxidation of Propylene	349
	Catalysts	349
	Reactions Reactions	350
	Kinetics	351
	Adsorption	352
	The selectivity problem	354
	Reaction mechanism: a simplified interpretation	356
	Structures of ammoxidation catalysts	360
	The UO ₃ -SbO ₄ catalyst	361
	Reaction mechanisms on USb ₃ O ₁₀	364
	The FeSbO ₄ catalyst	366
	Bismuth molybdate catalysts	366
	Structures of the active catalyst The catalytically active	
	bismuth molybdate A compreh nsive model of the reaction	
	mechanism mechanism	
	Multicomponent molybdate catalysts	377
	Summary of reaction chemistry	379
	Process design	380
	Processes and operating conditions	380
	Separation processes	382
	Reactor design	383

		CONTENTS xii
	Notation	384
	References	385
	Problems	388
		30,
5	Hydrodesulfurization	390
	Introduction	390
	Feedstocks	391
	Reactions	392
	Catalysts	393
	Processes	394
	Catalytic chemistry	396
	Reactions	396
	Introduction	396
	Reaction networks	396
	Kinetics	402
	Simplified kinetics for industrial feedstocks	408
	Catalysts	411
	Structures of oxidic catalysts	412
	Structures of sulfide catalysts	415
	Catalytic sites	419
	The mechanisms of reaction on promoted catalysts	422
	Process Engineering	426
	Introduction	426
	Residuum hydrodesulfurization processes	426
	Coal hydrodesulfurization processes	431
	Separation processes	431
	Mass transfer	432
	Fluid flow and mixing	433
	Catalyst aging	437
	Reactor stability	442
	Notation	442
	References	443
	Problems	145

Indexes

Name Index

Subject Index

445

448

CHAPTER

CRACKING

INTRODUCTION

PROCESSES

Most industrial reactions are catalytic, and many process improvements result from the discovery of better chemical routes, usually involving new catalysts. One of the largest scale catalytic processes practiced is *cracking*, the conversion of large petroleum molecules into smaller hydrocarbons, primarily in the gasoline range. In the United States cracking capacity exceeds 5 million barrels per day, and because the process has such a large production volume, years of research and development giving incremental improvements in gasoline yields have been highly profitable.

Cracking processes were first carried out in the absence of catalysts, but in the last four decades a series of continuously improved cracking catalysts has been applied, all of them solid acids. The most important advance in cracking technology in the last three decades has been the development of zeolite catalysts. These catalyze cracking so much more rapidly than the earlier catalysts like silicalumina that the processes have had to be essentially redesigned. Instead of a large fluidized bed, the reactor is now a small tube. Catalyst particles are conveyed through it by rapidly flowing oil vapors, which stay in contact with the catalyst for only about 5 s. Catalytic cracking is the process considered first in this book

Figure 1-1 Flow diagram of catalytic-cracking process.

because cracking chemistry, unlike that of most catalytic processes, is well understood. It is the chemistry of strong acids, hydrocarbons, carbonium ions, and zeolites. The zeolite catalysts are familiar as molecular sieves, solids with crystal-

Table 1-1 Typical operating conditions for a catalytic cracking process

Riser-tube reactor	
Temperature, °C: Base Top Pressure, atm Catalyst-to-oil ratio Gas residence time, s	550 510 3 6 5-7
Regenerator	ments in ga
Temperature in cyclone, °C CO/CO ₂ mole ratio Pressure at bottom of fluidized bed, atm Superficial gas velocity, cm/s Solids residence time, s Coke content of catalyst, wt %	650-760 0.7-1.3 : 1 3.5 60 30
At entrance At exit	0.8 < 0.1

line structures including uniform, molecular-scale pores. They have well-known surface structures, whereas most solid catalysts, being amorphous, have poorly understood surface structures.

The details of the chemistry of catalytic cracking follow, but before they are introduced, the process is outlined so that the chemistry can be understood in the context of industrial practice. The process (Fig. 1-1) consists of a riser-tube reactor, a fluidized-bed disengaging unit for separating catalyst particles from product vapors, and a fluidized-bed regenerator, in which high-molecular weight carbonaceous products, called *coke*, are burned off the catalyst to restore its activity. A fractionator downstream of the reactor and disengaging unit separates the product into various boiling fractions, and the heavy oil which has not undergone sufficient cracking is recycled to the reactor.

Typical operating conditions for the reactor and regenerator are summarized in Table 1-1, and typical product yields are collected in Table 1-2. These data provide a preliminary comparison between silica-alumina and zeolite catalysts.

One version of a riser-tube catalytic cracking unit is illustrated in Fig. 1-2. Gas oil is introduced with dispersive steam at the base of the reactor and mixed with regenerated catalyst supplied from a standpipe at the base of the fluidized-bed regenerator. The reactor diameter increases with height in this unit to maintain a nearly uniform catalyst velocity as the hydrostatic head in the riser

Figure 1-2 Riser catalytic-cracking unit.

Table 1-2 Performance of commercial cracking reactors with silica-alumina and zeolite catalysts [1]

Operating conditions	Durabead 5"	Durabead 1 ^b
	476	476
Vapor inlet temperature, C	548	549
Catalyst inlet temperature, C	474	471
Vapor outlet temperature, C	1.0	0.9
Liquid hourly space velocity, volvior in	1.9	2.0
Catalyst-to-oil ratio, vol/vol	0.84	0.82
Recycle ratio, vol recycle/vol fresh feed	3.6	3.5
Steam content of feed, wt %	12,900	13,400
r inlet temperature, °C yst inlet temperature, °C r outlet temperature, °C d hourly space velocity, vol/vol h lyst-to-oil ratio, vol/vol cle ratio, vol recycle/vol fresh feed n content of feed, wt % I reactor feed rate, bbl/day lyst circulation rate, kg/h e burnoff rate, kg/h ng range of recycle stream, °C version, vol %	136.065	136,065
	2.267	1,542
Coke burnoff rate, kg/h	215-332	232-327
	73.4	49.5
Conversion, vol % Cracking efficiency, 100 × vol gasoline/vol converted	77.6	77.3

to service and his pend bands at a		Yiel	ds	
HOLE IN SERVICE OF THE DESCRIPTION OF THE PROPERTY OF THE PROP	vol %	wt %	vol %	wt %
a statisticans bottoms	13.7	15.2	21.3	22.3
Synthetic tower bottoms Distillate fuel oil	12.9	13.3	29.2	29.4
	56.9	48.7	38.3	32.9
C ₄ -free gasoline Butanes	13.4	8.5	8.5	5.4
Dry gas (C ₃ and lighter)		8.9		6.6
Coke	7	5.4		3.4
Total		100.0		100.0
	2.1	1.3	1.1.	0.0
n-Butane	6.5	4.0	2.9	1.
Isobutane Butenes	4.8	3.2	4.5	3.0
Total C ₄	13.4	8.5	8.5	5.4
iC_4/C_4 ratio	1.35		0.64	
Propane	3.8	2.1	2.4	1.
Propylene	votove 4.1 .	2.4	3.7	2.
Total	7.9	4.5	6.1	3.
Ethane	fra	1.3	T	1.
Ethylene	\	0.6		0.
Methane	ļ j	1.8		1.
Hydrogen		0.1		0.
Hydrogen sulfide		0.6		0.
Total C2 and lighter	depth*	4.4		3.

[&]quot; REHY zeolite in silica-alumina matrix.

^b Silica-alumina.