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Preface

Uncertainty is one of the characteristics of the nature. Many theories have been
proposed in dealing with uncertainties. Fuzzy logic has been one of such theories.
Both of us were inspired by Zadeh’s fuzzy theory and Jonathan Lawry’s label
semantics theory when we both worked in University of Bristol.

Machine learning and data mining are inseparably connected with uncertainty.
To begin with, the observable data for learning is usually imprecise, incomplete or
noisy. Even the observations are perfect, the generalization beyond that data is still
afflicted with uncertainty; e.g., how can we be sure which one from a set of candidate
theories that all of them explain the data. Though Occam’s razor tells us to favor the
simplest models, this principle does not guarantee this simple model is the truth of
the data. In recent research, we have found that some complex models seem to be
more appropriate comparing to simple ones because of our complex nature and the
complicated mechanism of data generation in social problems.

In this book, we introduce a fuzzy logic basesd theory for modeling uncertainty
in data mining. The content of this book can be roughly split into three parts:
Chapters 1-3 give a general introduction of data mining and the basics of label
semantics theory. Chapters 4-8 introduce a number of data mining algorithms based
on label semantics and detailed theoretical aspects, and experimental results are
given. Chapters 9—12 introduce prototype theory interpretation of label semantics
and data mining algorithms developed based on this interpretation. This book is for
the readers like postgraduates and researchers in Al, data mining, soft computing
and other related areas.

Zengchang Qin
Pittsburgh, PA, USA
Yongchuan Tang
Hangzhou, China
July, 2013
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Al Artificial Intelligence

ANN Artificial Neural Networks

AUC Area Under the ROC Curve

AVE Average Error

BLDT Bayesian LDT

BP Back Propagation

CAD Computer Aided Diagnosis

CW Computing with Words
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DT Decision Tree
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KDD Knowledge Discovery in Database
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LD Linguistic Data

LDT Linguistic Decision Tree

LFOIL Linguistic FOIL

LID3 Linguistic ID3
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LLE Locally Linear Embedding
LLR Locally Linear Reconstruction
LPT Linguistic Prediction Tree

LS Least Square

LT Linguistic Translation

MB Merged Branch

MLP Multi-Layer Perceptrons
MSE Mean Square Error

MW Modeling with Words

NB Naive Bayes

NN Neural Networks

PDF Probability Density Function
PET Probability Estimation Tree
PNL Precisiated Natural Language
QP Quadratic Programming

ROC Receiver Operating Characteristics
SNB Semi-Naive Bayes

SRM Structural Risk Minimization
SVM Support Vector Machines
SVR Support Vector Regression
TPR True Positive Rate



Notations

Al

P(x|m)

pm(-)
LR

Absolute value of A when A is a number or cardinality of A when A is a set
Database with the size of [DB|: DB = {xi,...,X|pg|}

n-dimensional variable that: x; € DB fori=1,...,|DB]|

Set of labels defined on random variable x

Logical expressions set given L

Focal set of random variable x

Linguistic decision tree that contains |7'| branches: T = {B,..., B}
A set of branches: B = {By,...,By} T =B iff: M = |T|

A branch of LDT, it has |B| focal elements: B = {F,...,Fig}

A set of classes: C = {C},...,Cic|}

Mass assignment of x

Mass assignment on a multi-dimensional variable x

Appropriateness degree of using label L to describe x
Appropriateness measure of using logical expression 6 to describe x where
@ €lLE

Conditional probability of x given y

Belief function

Plausibility function

A-function to transfer the logical expression 0 into a set of labels
Appropriateness measure of using logical expression 6 to label x
Information Gain function

Fuzzy database FD = {(0,(i),...,6,(i)):i=1,...,N}

Estimated value of x based on a training database

Updated value of p at iterative updating process

Conditional distribution of x given mass assignment m

Prior mass assignment

Information cell mixture model .¥ % = (L, Pr)
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