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Special Notation

| X
alb
C
GF(q)
F

<

number of elements in a finite set X

the integer a is a divisor of the integer b
complex numbers

finite field having g elements

finite field having g elements

natural numbers = {integers n : n > 0}
rational numbers

real numbers

integers

alternating group on n letters

dihedral group of order 2n

all automorphisms of a vector space V

all n x n nonsingular matrices with entries in a field k
all n x n matrices of determinant 1 with entries in a field k
unitriangular n x n matrices over a field k
quaternion group of order 8

symmetric group on n letters

symmetric group on a set X

four-group ’

integers modulo m

fraction field of a domain R

commutator subgroup

center of a group G

signum of a permutation «

degree of a polynomial f(x)

determinant of a matrix A

identity matrix

identity function on a set X

ifi = j

1
Kronecker delta §;; = { ifi £ j
ifi £
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Preface to the First Edition

A First Course in Abstract Algebra introduces three related topics: number
theory (division algorithm, greatest common divisors, unique factorization
into primes, and congruences), group theory (permutations, Lagrange’s the-
orem, homomorphisms, and quotient groups), and commutative ring theory
(domains, fields, polynomial rings, homomorphisms, quotient rings, and fi-
nite fields). The final chapter combines the preceding chapters to solve some
classical problems: angle trisection, squaring the circle, doubling the cube,
construction of regular n-gons, and impossibility of generalizing the quad-
ratic, cubic, and quartic formulas to polynomials of higher degree. Such re-
sults make it clear that mathematics is, indeed, one subject whose various
areas do bear one on the other.

A complicating factor, permeating introductory courses, is that this may
be one of the first times students are expected to read and write proofs. This
book is my attempt to cover the required topics, to give models of proofs, and
to make it all enjoyable.

There is enough material here for a two-semester course, even though
many readers may be interested in only one semester’s worth. All the “usual
suspects” are assembled here, however, and I hope that instructors will be
able to find those theorems and examples they believe to be appropriate for
a first course. When teaching a one-semester course, one must skip parts of
the text; however, it is often possible simply to state and use theorems whose
proofs have been omitted. For example, if the discussion of generalized as-
sociativity is omitted, one can safely cite the laws of exponents; if the proof
of Gauss’s lemma is omitted, one can quote it and still derive irreducibility
criteria for polynomials in Q[x]. ...

I do not enjoy reading introductory chapters of books that consist wholly of
“tools” needed for understanding subsequent material. By the Golden Rule,
I do not inflict such greetings on my readers. Rather than beginning with
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a discussion of logic, sets, Boolean operations, functions, equivalence rela-
tions, and so forth, I introduce such tools as they are needed. For example,
functions and bijections are introduced with permutation groups; equivalence
relations are introduced in Chapter 3 to construct fraction fields of domains (I
recognize that this late entry of equivalence relations and equivalence classes
may annoy those who prefer introducing quotient groups with them; however,
I feel that readers first meeting cosets and quotient groups do not need the ex-
tra baggage of an earlier discussion of equivalence classes). The first section
of Chapter 1 does introduce an essential tool, induction, but induction also
serves there as a vehicle to introduce more interesting topics such as primes
and De Moivre’s theorem.

Several results that are not usually included in a first course have been
included just because they are interesting and accessible applications; they
should not be presented in class because they are designed for curious readers
only. In Chapter 1 on number theory, congruences are used to find on which
day of the week a given date falls. In Chapter 2 on groups, the group of
motions of the plane is used to describe symmetry of planar figures, the affine
group is used to prove theorems of plane geometry, and a counting lemma
is applied to solve some difficult combinatorial problems. In Chapter 3 on
rings, we construct finite fields, and then we use them to construct complete
sets of orthogonal Latin squares. The (fourth) chapter is both a dessert and
an appetizer. After a short discussion of vector spaces and dimension (which
reinforces the categorical viewpoint of objects and morphisms), we show how
modern algebra solves several classical problems of geometry. After giving
the quadratic, cubic, and quartic formulas, we present an analogy between
symmetry groups of figures and Galois groups, and we prove the theorem of
Abel and Ruffini that there is no generalization of the classical formulas to
higher degree polynomials. This discussion can serve as an introduction to
Galois Theory.

Since Birkhoff and Mac Lane created this course half a century ago, there
has been mild controversy about the order of presentation: should the expo-
sition of groups precede that of rings, or should rings be done first (Birkhoff
and Mac Lane do rings first). There are arguments on both sides and, after
being a rings first man for a long time, I have come to believe that it is more
reasonable to do groups first. The definition of group is very simple, and per-
mutation groups offer an immediate nontrivial example. Many elementary
properties of rings are much simpler once one has studied groups. Indeed,
the very definition of a ring is more palatable once one has seen groups. As



Preface to the First Edition xi

a second example, the quotient group construction can be used to construct
quotient rings (since rings are additive abelian groups and ideals are normal
subgroups), but the quotient ring construction cannot be used directly in con-
structing quotient groups. Thus, discussing groups first is more efficient than
the alternative. Finally, whenever I have taught rings first, I have found an
initial confusion in the class about the relation of general rings to the partic-
ular ring Z of integers. There is a need to develop some arithmetic properties
of Z, and bouncing back and forth between commutative rings and Z creates
an unnecessary difficulty for many students. In particular, students become
unsure about which properties of Z may be assumed and which need proof.
The organization here avoids this problem by separating these two subjects
by group theory.

Giving the etymology of mathematical terms is rarely done. Let me ex-
plain, with an analogy, why I have included derivations of many terms. There
are many variations of standard poker games and, in my poker group, the
dealer announces the game of his choice by naming it. Now some names
are better than others. For example, “Little Red” is a game in which one’s
smallest red card is wild; this is a good name because it reminds the players
of its distinctive feature. On the other hand, “Aggravation” is not such a good
name, for though it is, indeed, suggestive, the name does not distinguish this
particular game from several others. Most terms in mathematics have been
well chosen; there are more red names than aggravating ones. An example of
a good name is even permutation, for a permutation is even if it is a product
of an even number of transpositions. Another example of a good term is the
parallelogram law describing vector addition. But many good names, clear
when they were chosen, are now obscure because their roots are either in an-
other language or in another discipline. The term mathematics is obscure only
because most of us do not know that it comes from the classical Greek word
meaning “to learn.” The term corollary is doubly obscure; it comes from the
Latin word meaning “flower,” but what do flowers have to do with theorems?
A plausible explanation is that it was common, in ancient Rome, to give flow-
ers as gifts, and so a corollary is a gift bequeathed by a theorem. The term
theorem comes from the Greek word meaning “to watch” or “to contemplate”
(theatre has the same root); it was used by Euclid with its present meaning.
The term lemma comes from the Greek word meaning “taken” or “received;”
it is a statement that is taken for granted (for it has already been proved) in
the course of proving a theorem. On the other hand, I am not too fond of the
mathematical terms normal and regular for, in themselves, they convey no
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specifie meaning. Since the etymology of terms often removes unnecessary
obscurity, it is worthwhile (and interesting!) to do so.

It is a pleasure to thank Dan Grayson, Heini Halberstam, David G. Poole,
Ed Reingold, and John Wetzel for their suggestions. I also thank the He-
brew University of Jerusalem for the hospitality given me as I completed my
manuscript. I thank the several reviewers who carefully read my manuscript
and made valuable suggestions. They are Daniel D. Anderson, University
of Iowa; Michael J. J. Barry, Allegheny College; Brad Shelton, University
of Oregon; Warren M. Sinnott, Ohio State University; and Dalton Tarwater,
Texas Tech University. And I thank George Lobell, who persuaded me to
develop and improve my first manuscript into the present text.

Joseph J. Rotman



Preface to the Second Edition

I was reluctant to accept Prentice Hall’s offer to write a second edition of this
book. When I wrote the first edition several years ago, I assumed the usual
assumption: All first courses in algebra have essentially the same material,
and so it is not necessary to ask what is in such a book, but rather how it is
in it. I think that most people accept this axiom, at least tacitly, and so their
books are almost all clones of one another, differing only in the quality of the
writing. Looking at the first version of my book, I now see many flaws; there
were some interesting ideas in it, but the book was not significantly different
from others. I could improve the text I had written, but I saw no reason to
redo it if I were to make only cosmetic changes.

I then thought more carefully about what an introduction to algebra ought
to be. When Birkhoff and Mac Lane wrote their pioneering A Survey of Mod-
ern Algebra about 60 years ago, they chose the topics that they believed were
most important, both for students with a strong interest in algebra and those
with other primary interests in which algebraic ideas and methods are used.
Birkhoff and Mac Lane were superb mathematicians, and they chose the top-
ics for their book very well. Indeed, their excellent choice of topics is what
has led to the clone producing assumption I have mentioned above. But times
have changed; indeed, Mac Lane himself has written a version of A Survey
of Modern Algebra from a categorical point of view. [I feel it is too early to
mention categories explicitly in this book, for I believe one learns from the
particular to the general, but categories are present implicitly in the almost
routine way homomorphisms are introduced as soon as possible after intro-
ducting algebraic systems.] Whereas emphasis on rings and groups is still
fundamental, there are today major directions which either did not exist in
1940 or were not then recognized to be so important. These new directions
involve algebraic geometry, computers, homology, and representations. One
may view this new edition as the first of a two volume sequence. This book,
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the first volume, is designed for students beginning their study of algebra.
The sequel, designed for beginning graduate students, is designed to be inde-
pendent of this one. Hence, the sequel will have a substantial overlap with
this book, but it will go on to discuss some of the basic results which lead
to the most interesting contemporary topics. Each generation should survey
algebra to make it serve the present time.

When I was writing this second edition, I was careful to keep the pace of
the exposition at its original level; one should not rush at the beginning. Be-
sides rewriting and rearranging theorems, examples, and exercises that were
present in the first edition, I have added new material. For example, there
is a short subsection on euclidean rings which contains a proof of Fermat’s
Two-Squares Theorem; and the Fundamental Theorem of Galois Theory is
stated and used to prove the Fundamental Theorem of Algebra: the complex
numbers are algebraically closed.

I have also added two new chapters, one with more group theory and one
with more commutative rings, so that the book is now more suitable for a
one-year course (one can also base a one-semester course on the first three
chapters). The new chapter on groups proves the Sylow theorems, the Jordan-
Holder theorem, and the fundamental theorem of finite abelian groups, and it
introduces free groups and presentations by generators and relations. The new
chapter on rings discusses prime and maximal ideals, unique factorization in
polynomial rings in several variables, noetherian rings, varieties, and Grobner
bases. Finally, a new section contains hints for most of the exercises (and an
instructor’s solution manual contains complete solutions for all the exercises
in the first four chapters).

In addition to thanking again those who helped me with the first edition,
it is a pleasure to thank Daniel D. Anderson, Andrew Bremner, Aldo Brigaglia,
E. Graham Evans, Daniel Flath, William Haboush, Dan Grayson, Christopher
Heil, Gerald J. Janusz, Carl Jockusch, Jennifer D. Key, Steven L. Kleiman,
David Leep, Emma Previato, Juan Jorge Schaffer, and Thomas M. Songer for
their valuable suggestions for this book.

And so here is edition two; my hope is that it makes modern algebra ac-
cessible to beginners, and that it will make its readers want to pursue algebra
further.

Joseph J. Rotman
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Number Theory

1.1 INDUCTION

There are many styles of proof, and mathematical induction is one of them.
We begin by saying what mathematical induction is not. In the natural sci-
ences, inductive reasoning is the assertion that a freqently observed phenom-
enon will always occur. Thus, one says that the Sun will rise tomorrow morn-
ing because, from the dawn of time, the Sun has risen every morning. This is
not a legitimate kind of proof in mathematics, for even though a phenomenon
has been observed many times, it need not occur forever.

Inductive reasoning is valuable in mathematics because seeing patterns in
data often helps in guessing what may be true in general. On the other hand,
inductive reasoning is not adequate for proving theorems. Before we see
examples, let us make sure that we agree on the meaning of some standard
terms.

Definition. Anintegerisoneof0,1,—1,2,-2,3,....

Definition. An integer d is a divisor of an integer n if n = da for some
integer a. An integer n > 2 is called prime' if its only positive divisors are 1
and n; otherwise, n is called composite.

10ne reason the number 1 is not called a prime is that many theorems involving primes
would otherwise be more complicated to state.
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An'integer n > 2 is composite if it has a factorization n = ab, wherea < n
and b < n are positive integers; the inequalities are present to eliminate the
uninteresting factorization n = n x 1. The first few primes are 2, 3, 5, 7, 11,
13,17, 19, 23, 29, 31, 37, 41, . . .; that this sequence never ends is proved in
Corollary 1.27.

Consider the assertion, for n a positive integer, that

f(n) = n* —n 441
is always prime. Evaluating f(n) forn =1, 2, 3, ..., 40 gives the numbers

41,43,47,53,61,71,83,97,113, 131,

151, 173, 197, 223, 251, 281, 313, 347, 383, 421,

461, 503, 547, 593, 641, 691, 743,797, 853, 911,

971, 1033, 1097, 1163, 1231, 1301, 1373, 1447, 1523, 1601.

It is tedious, but not very difficult, to show that every one of these numbers is
prime (see Proposition 1.3). Inductive reasoning predicts that all the numbers
of the form f(n) are prime. But the next number, f(41) = 1681, is not
prime, for f(41) = 412 — 41 + 41 = 412, which is, obviously, composite.
Thus, inductive reasoning is not appropriate for mathematical proofs.

Here is an even more spectacular example (which I first saw in an article
by W. Sierpinski). Recall that perfect squares are numbers of the form n?,
where n is an integer; the first few perfect squares are 1, 4, 9, 16, 25, 36, ....
For each n > 1, consider the statement

S(n): 991n% + 1 isnot a perfect square.

The nth statement, S(rn), is true for many #; in fact, the smallest number n for
which S(n) is false is

n = 12,055, 735, 790, 331, 359, 447, 442, 538, 767
~ 1.2 x 10%.

(The original equation, m? = 991n2 + 1, is an example of Pell’s equation—
an equation of the form m?> = pn® + 1, where p is prime—and there is
a way of calculating all possible solutions of it. An even more spectacular
example of Pell’s equation involves the prime p = 1,000,099; the smallest
n for which 1,000,099n% + 1 is a perfect square has 1116 digits.) The most
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generous estimate of the age of the earth is 10 billion (10,000,000,000) years,
or 3.65 x 10'? days, a number insignificant when compared to 1.2 x 10%, let
alone 101, If, starting from the Earth’s very first day, one verified statement
S(n) on the nth day, then there would be today as much evidence of the
general truth of these statements as there is that the Sun will rise tomorrow
morning. And yet some of the statements S(n) are false!

As a final example, let us consider the following statement, known as Gold-
bach’s conjecture: Every even number m > 4 is a sum of two primes. (It
would be foolish to demand that all odd numbers be sums of two primes.
For example, let us show that 27 is not the sum of two primes. Otherwise,
27 = p + q, where p and g are primes. Now one of the summands must be
even (for the sum of two odds is even); as p = 2 is the only even prime, it
follows that g = 25, which is not prime.)

No one has ever found a counterexample to Goldbach’s Conjecture, but
neither has anyone ever proved it. At present, the conjecture has been verified
for all even numbers m < 10" by H. J. J. te Riele and J.-M. Deshouillers.
It has been proved by J.-R. Chen (with a simplification by P. M. Ross) that
every sufficiently large even number m can be written as p + g, where p is
prime and g is “almost” a prime; that is, g is either a prime or a product of two
primes. Even with all of this positive evidence, however, no mathematician
will say that Goldbach’s Conjecture must, therefore, be true for all even m.

We have seen what (mathematical) induction is not; let us now discuss
what induction is. Suppose one has a list of statements

S, S$Q2),...,8Mn),...,

one for each positive integer n. Having determined that many statements
on this list are true, one may guess that every S(n) is true. Induction is a
technique of proving that all the statements S(n) on the list are, indeed, true.
For example, the reader may check that 2" > n for many values of n, but is
this inequality true for every positive integer n? We will soon prove, using
induction, that this is so.

Our discussion is based on the following property of positive integers (usu-
ally called the Well Ordering Principle).

Least Integer Axiom. There is a smallest integer in every nonempty collec-
tion C of positive integers.

Saying that C is nonempty merely means that there is at least one integer in
the collection C. Although this axiom cannot be proved (it arises in analyzing
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whatintegers are), it is certainly plausible. Consider the following procedure.
Check whether 1 belongs to C;; if it does, then it is the smallest integer in C.
Otherwise, check whether 2 belongs to C; if it does, then 2 is the smallest
integer; if not, check 3. Continue this procedure until one bumps into C; this
will occur eventually because C is nonempty.

Remark. The Least Integer Axiom holds for the set of nonnegative integers
as well as for the set of positive integers: any nonempty collection C of the
nonnegative integers contains a smallest integer. If C contains 0, then O is
the smallest integer in C; otherwise, C is actually a nonempty collection of
positive integers, and the original axiom now applies to C. =

We begin by recasting the Least Integer Axiom.
Proposition 1.1 (Least Criminal). Ler S(1), S(2),...,S(n), ... be state-

ments, one for each integer n > 1. If some of these statements are false, then
there is a first false statement.

Proof. Let C be the collection of all those positive integers n for which S(n)
is false; by hypothesis, C is nonempty. The Least Integer Axiom provides a
smallest integer m in C, and S(m) is the first false statement. e

This seemingly innocuous proposition is useful.

Theorem 1.2. Every integer n > 2 is either a prime or a product of primes.

Proof.- 'Were this not so, there would be “criminals,” that is, integers n > 2
neither prime nor a product of primes; a least criminal m is the smallest such
integer. Since m is not a prime, it is composite; there is thus a factorization
m =abwith2 <a <mand2 < b < m (since a is an integer, 1 < a implies
2 < a). Since m is the least criminal, both a and b are “honest,” i.e.,

a =PP,P”"' and b=qq’q”'-' :
where the factors p and g are primes. Therefore,

r_n

m:ab:pp/p"..-qqq

is a product of (at least two) primes, which is a contradiction. e



