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Antibody-Dependent Cellular
Cytotoxicity (ADCC)

Victor Raiil Gémez Romdn®*, Joseph C. Murray”* and
Louis M. Weiner

AInternational Vaccine Institute, Seoul, Korea, "Department of Oncology, Georgetown Lombardi
Comprehensive Cancer Center, Georgetown Medical Center, Washington, DC, USA

BRIEF HISTORY OF ADCC

In the 1960s, several independent labora-
tory observations indicated that cells could
be killed by other cells, yet the mechanisms
of killing were unknown. Several hypoth-
eses were formulated and experiments were
conducted paving the way for the discovery
and characterization of what we now know
as cytotoxic T lymphocytes (CTLs) and natu-
ral killer (NK) cells. However, early experi-
ments pointed to the hypothesis that immune
serum was in some cases necessary for some
types of effector cells to mediate killing of tar-
get cells. In 1965, Erna Moeller, a researcher
working at the Karolinska Institute, showed
that incubation of mouse tumor target cells
with heat-inactivated anti-serum from rabbits
immunized with these tumor cells, followed by
incubation with lymphoid cells from unimmu-
nized mice, resulted in cytotoxicity.! Such cyto-
toxicity required contact or “serum-induced

* Corresponding Author

aggregation” between the tumor targets and
the lymphoid effectors. Experiments were sub-
sequently performed to identify the aggregat-
ing and cytotoxicity-inducing factor contained
in serum. In 1970, MacLennan, Loewi, and
Harding, researchers working at the Canadian
Red Cross Memorial Hospital, reported that the
serum factor required for this type of cell-medi-
ated cytotoxicity was an immunoglobulin with
the “chemical properties of IgG.”* Subsequent
experiments confirmed this finding by show-
ing that the antibody required belonged to the
IgG class and that the mechanism of antibody-
dependent killing of target cells by serum fac-
tors did not require the heat-labile components
of complement, as heat inactivation of serum
maintained the killing effect.” The phenomenon
acquired the name of “antibody-dependent
lymphocyte-mediated cytotoxicity”* and grad-
ually became known as “antibody-dependent
cell-mediated cytotoxicity,” or ADCC. The three
basic components of ADCC were recognized as
being effector cells, antibodies, and target cells
coated with antigen. “Targets” could refer to

Antibody Fe

© 2014 Elsevier Inc, All rights reserved.



2 1. ANTIBODY-DEPENDENT CELLULAR CYTOTOXICITY (ADCC)

@® Cytotoxic granule
Y Fc-receptor
A Free antibody

& Antibody bound to surface antigen

FIGURE 1.1

Effector cells and targets. ADCC involves the interplay between a granular effector cell and a target cell

expressing antigens on its surface. The granular effector cell must express Fe receptors on its surface for ADCC to occur.

cells expressing tumor, viral, or bacterial anti-
gens; therefore, ADCC became known as an
immune mechanism that could be potentially
protective against certain types of cancers as
well as infectious diseases. Considerable pro-
gress has been made in characterizing the
effector cells and the receptors involved in this
phenomenon, and ADCC can now be defined
as the immune mechanism through which
Fe-receptor-bearing effector cells can kill target
cells that have surface antigens complexed with
antibody (Figure 1.1).

EFFECTOR CELLS

Although initial experiments focused on
large granular lymphocytes as the main effec-
tor cells mediating ADCC, several groups have
now characterized the types of cells that can
mediate ADCC effector function. Table 1.1

describes the various types of effector cells that
have been shown to mediate ADCC. Three
common characteristics of these cells are that
they are all leukocytes, they contain granules,
and they express Fc receptors. Mononuclear
leukocytes (NK cells, macrophages, yd T cells)
and polymorphonuclear leukocytes (neutro-
phils, basophils, eosinophils) can both medi-
ate ADCC.* This diversity of effectors is worth
emphasizing, as a significant proportion of
ADCC experiments reported in the scientific
literature are either “NK-centric” or focused on
the use of the peripheral blood mononuclear
cell (PBMC) fraction to obtain effector cells.
This unintentional experimental bias tends to
overlook the role of neutrophils and other poly-
morphonuclear leukocytes (PMNs or PMLs); it
is probably a consequence of both the relative
ease of working with peripheral NK cells and
the practical difficulties associated with work-
ing with PMNs, which are rather short lived

ANTIBODY Fc



RECEPTORS INVOLVED 3

TABLE 1.1 Peripheral Blood Effector Cells and Fe Receptors Involved in ADCC
Leukocyte Fraction Effectors Predominant Fc Receptors Refs.
PBMC NK cells FcyRIITA /CD16 Wallace et al.*
Monocytes/macrophages FeyRI/CD64 Wallace et al.,* Tudor and Bomsel®
FcyRII/CD32
v T cells (subset) FcyRIIIA /CD16 Chen and Freedman'?
PMN Granulocytes (neutrophils, FeyRIl/CD32 Wallace et al.,* Horner et al.®
basophils, eosinophils) FeyRIIIb/CD16b
FecaR1/CD89

and may require isolation through cumbersome
Percoll-gradient procedures or hypotonic lysis
steps. While the effector cell phenotype of NK
cells, phagocytes, and B are discussed in detail
elsewhere in this book, cells contained in the
PMN fraction may be equally important effec-
tors involved in Fc-mediated functions, includ-
ing ADCC.

RECEPTORS INVOLVED

Three types of Fc receptors are involved
in mediating IgG-dependent ADCC: FcyRI
(CD64), ECyRII (CD32), and FcyRIIIA (CD16).
Of these, FcyRIIIA (CD16) is often invoked as
the main receptor involved, as it is expressed
predominantly by NK cells (Table 1.1); how-
ever, in vitro evidence indicates that monocytes
and granulocytes can mediate equally potent
ADCC via other Fc receptors.*® In cancer and
infectious disease research, all three FcyRs
have been shown to mediate ADCC. Natural
polymorphisms in the Fc receptors have been
shown to have a clear impact on ADCC in
vitro and an effect on ADCC-dependent cancer
immunotherapy. Additionally, IgA-dependent
ADCC has also been described in some mod-
els and is dependent on the Fc alpha receptor
(FcaR, CD89), which is expressed primarily on
PMN and monocytes (Table 1.1).

Our knowledge of Fe-receptor expression and
ADCC function to date has been limited to the
study of either immortalized effector cell lines
or fresh effector cells circulating in peripheral
blood. Less is known about Fc-receptor expres-
sion in cells residing in mucosal tissues, which
represent the first line of defense against invad-
ing pathogens. For example, a recent study
examining Fc-receptor expression in a limited
number of patients (n=5) showed that CD16,
CD32, and CD64 expression was virtually non-
existent on rectal macrophages compared to
the levels of expression observed on peripheral
blood monocytes.” Vaginal macrophages from
the same patients, however, expressed very
high levels of CD16. This may have important
implications for ADCC, as it could suggest that
ADCC (and other Fc-receptor-dependent mech-
anisms of immunity) may be relevant as a first
line of mucosal defense in some compartments
but not in others. In this regard, several stud-
ies have examined the role of mucosal antibody
in mediating ADCC in vitro using effector cell
lines or fresh effector cells derived from periph-
eral blood. In contrast, less is known about the
ADCC function of effector cells recovered from
mucosal tissues, and defining the expression of
Fc receptors across mucosal tissues and assess-
ing their ex vivo ADCC function might yield
insights into the spatial and temporal role of
ADCC in infection and immunity.

ANTIBODY Fc



- 1. ANTIBODY-DEPENDENT CELLULAR CYTOTOXICITY (ADCC)

MECHANISMS OF ADCC

Recognition of the Target Cell and
Cross-Linking of the Fc Receptor on the
Effector Cell

An obvious prerequisite for ADCC to occur is
the interaction of antibody bound to the target
cell with Fc receptors on the effector cell. This
interaction is both regulated and facilitated
by conformational changes that occur in the
antibody molecule only after it has bound to
its cognate antigen (Figure 1.1). After binding
to surface antigens on the target cell, confor-
mational changes occur in the Fc region of the
antibody, which result in its increased affinity
for a single Fc receptor on the effector cell.®
Glycosylation of the Fc region also plays an
important role in modulating the affinity of anti-
body for Fc receptors; in particular, antibodies
that are heavily fucosylated (during posttrans-
lational modifications within the B cell) have
decreased affinity for FcyRIIIA (CD16), whereas
removal of fucose enhances their affinity for
FcyRIIIA and their ability to mediate ADCC.’
Recent evidence indicates that binding between
IgG and FcyRIIIA involves tight carbohydrate—
carbohydrate interactions that are weakened or
obliterated when IgG is fucosylated."”

Compared to small, soluble antigens, the
relatively larger size of tumors or virally
infected cells coated with several antibody mol-
ecules on their surface can facilitate physical
rearrangements and interactions between Fc
receptors present on effector cells (Figure 1.2A).
These interactions are often referred to as
Fc-receptor ligation, agglutination, aggrega-
tion, or cross-linking. The main model to study
“ADCC-like” signal transduction pathways
relies on the assumption that the first step in
generating an ADCC response is the ligation or
cross-linking of Fc receptors on the surface of
the effector cell as facilitated by a large, “par-
ticulate” antigen such as a viral-infected cell
coated with surface antigen-specific antibody

(Figure 1.2A). Experimentally, to simulate par-
ticulate antigen-induced Fc-receptor cross-
linking, many researchers incubate NK cells
with FeyRIIIA-specific antibodies, followed by
incubation with a secondary antibody (Figure
1.2B)."" Another method of simulating antigen-
induced Fc-receptor cross-linking is by “reverse
ADCC,” an experimental setup in which the
polarity of the bridging antibody is reversed
(Figure 1.2C)."? Using these two CD16-cross-
linking simulation strategies, ADCC-like signal
transduction pathways have been dissected in
both human and murine NK cells.

Downstream Signals in the Effector Cell

For ADCC to occur, molecular signals must
also be transduced when an FcyR-bearing effec-
tor cell recognizes an antibody-coated target
cell.’> > Much of what we know about ADCC
signal transduction is based on experiments
using FcyRIITA-bearing NK cells as effector
cells. Less is known about signaling in other
effector cells expressing other FcyRs.

In the current signaling model, the gamma
(y) subunit associated with the FcyRIITA recep-
tor plays a crucial role in signaling (Figure 1.3).
It contains immunoreceptor tyrosine-based acti-
vation motifs (ITAMs), which are consensus
sequences containing tyrosine residues that
can be phosphorylated. ITAMs do not have
intrinsic tyrosine kinase activity; instead, they
become phosphorylated by cellular src kinases
upon FcyRIIA cross-linking. Phosphorylated
ITAMs recruit the spleen tyrosine kinase (Syk)
protein, which binds to the ITAMs via its SH2
domains and becomes activated (Figure 1.3).
Recruitment and activation of Syk triggers
three main pathways involved in ADCC: phos-
pholipase C-gamma pathway (PLC-y), phos-
phatidylinositol 3-kinase (PI-3K) pathway, and
Vav/Rho-family G-proteins pathway:.

The PLC-y pathway involves the Syk-
dependent phosphorylation of the PLC-y
isozymes. Activated PLC-y cleaves membrane

ANTIBODY Fc



