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PREFACE

During the past decade, the teaching of management science has begun to shift
away from a pedagogy based entirely on the theory toward one that empha-
sizes the application of models in actual practice. Rather than focus primarily
on the theoretical development of algorithms, the latter approach stresses the
practical considerations involved in the recognition and formulation of appro-
priate models and the subsequent analysis of the economic and managerial
implications of tte solution results.

Over the past three decades, the development of management science
techniques has far outpaced our understanding of how and when and, in fact,
whether to use them. The successful practice of management science requires
the recognition that these concepts and techniques are applied to problems
involving people—people who interact with each other and their environment
within the confines of an oftentimes complex organizational structure. Thus,
the study of management science is incomplete without exposure to actual
decision problems faced by actual managers—problems fraught with the ambi-
guity and uncertainty that often accompany decisions made in the world of real
organizations. The cases in this book provide this exposure.

For many students who are accustomed to textbook exercises, an approach
that emphasizes problem identification as well as problem solution may seem
disconcerting. For most students, the entire educational process has attuned
them to finding answers (using well-defined methods) to precisely structured
questions. In practice, decision problems can rarely be solved that easily. First,
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there is almost never a single right answer; second, determining what the
problem really is often requires far more insight and ability than its anaiysis
once it is precisely defined. Thus, providing the student with real situations
that lacks rigid structure is an essential element in a management education.

Mathematical programming is one of the most widely used andqertauﬂy
one of the most successful of management science methodologies. Over the
nearly four decades since its inception, it has attracted the attentioriof manag- -
ers, engineers, social scientists, and public policy makers as one of the most
powerful and flexible tools available to support decision making. Herice an
understanding of these tools 1s useful to all levels of management; yet due to
their mathematical complexity, these are typically not well understood by the
nonexpert. In view of this need the bock is structured not to teach mathematics
but to demystify the often elusive concepts underlying these optimization
models.

* Optimization Models for Planning and Allocation emphasizes the formulation
of mathematical programring models, the use of computer output to gain
insight as well as answers, and the discussion of the difficult implementation
problems that often accompany the development and use of quantitative
models in the corporate decision-making process. While the purpose of the text
is not to train technicians, it is important that both line and staff management
understand the technology that can be brought to bear in making decisions for
planning and allocation. Thus, the material in the book has been structured to
be suitable for a wide audience from top management who will use this
technology to middle management who will initiate and/or manage the devel-
opment of appropriate models to staff who will participate iri the actual model
design and development. Observations of the uses of quantitative models in
corporate settings has reinforced the conviction that problems often result from
the gap between line management and techrucal staff. Thus, the aim of this
book is to educate managers who might effectively act as a liaison between
these twe groups, understanding and being able to communicate the needs of
both. Both students with a great deal of technical training and experience and
those with limited backgrounds'can nse the material and benefit from this
orientation.

This focus, rather than the more traditional focus on theory and algo-
rithms, is intensified by a sequence of cases that highlights both the formulation
of optimization models and the subsequent analysis of the economic and
managerial implications of the solution results. Typically, a caseis a description
of a real-life management situation that the student is expected to analyze,
discuss in class, and suggest some recommendations for action. Rather than
having students memorize facts and techniques, this pedagogical approach
emphasizes learning by “’doing,” through the process of exposure to a series of
cases covering a variety of different problems in different industries.

There are two reasons that the cases in the book were chosen. First, I
want students to follow the progress of management science projects. Expo-
sure to the choices real analysts face in designing models for actual situations is
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invaluable; it illustrates the benefits and pitfalls in the use of mathematical
programming practice. Second, I think that students should have the oppor-
tunity to do their own model development in an environment as close to the
real one as is possible in the classroom—an environment of people and thus
personalities, of grganizational hierarchy and thus political complexity. Devel-
oping management science approaches to a case situation forces the student to
come to grips with these igsues and to grapple with problem definition,
implemention, and communication with different levels of the organization—
as well as with methodology. Perhaps more importantly, these cases provide
“hands-on” management science experience. Charles Gragg, one of the more

outspoken and best remembered advocates of the use of cases in business
education, wrote:

It can be said flatly that the mere act of listening to wise statements and sound
advice does little for anyone . . . no amount of information, whether theory or fact,
in itself improves insight ‘or judgment or increases ability to act wisely under
conditions of responsibility. . . . In the process of learning, the learner's dynamic
cooperation is required. Such cooperation from students does not arise automatic-
ally, however. It has to be provided for and continuatly encouraged.”

The cases herein provide this encouragement.

Optimization Models for Planning and Allocation has been designed for a
graduate course in applied mathematical programming, especially for students
who may soon be in a position to develop and/or implement such models. The
book has not been designed for the “technical course in optimization theory” of
the sort offered by many operations research or mathematics departments.
However, enough underlying theoretical and conceptual development has
been provided to allow future managers to understand the techniques. Nor is
the text appropriate for those who have had no prior gXxposure to management
science, although the text does, for the sake of completeness, review the initial
conceptual underpinnings that would be presented in a first course such as
“Introduction to Management Science”” or “Quantitative Methods in Manage-
ment.” The cases, however, clearly the raison d’etre for this book, can be taught
at several different levels. Many of these cases have been used successfully
with audiences ranging from public policy makers and practicing business
executives to students in MBA programs and in graduate operations research
courses. :

Apart from the desirability of a prior course in management science, which
covers, among other topics, the basics of linear programming and the pre-
sumption of some familiarity with basic mathematical concepts (e.g., graphing
functions, using equations), there are few prerequisites for using this book. I
have tried to deal as little as possible with complex mathematics and have

'Charles Gragg, Because Wisdom Can’t Be Told, distnibuted by the Intercollegiate Case Clearing
House, ICCH No 9-451-005



structured the material so that neither experience with linear algebra, familiar-
ity with vector and matrix notation, nor knowledge of calculus is required. 1
have assumed that students can handle equations containing summations,
although I have used that notation as sparingly as possible. When uncer-
tainty is explicitly brought into the picture, I presume at least a fleeting prior
exposture to expected values and cumulative probability distributions, and use
decision diagrams as occasional illustrations. R T

Chaptef 1 briefly discusses a taxonomy of problem solving approaches and
indicates how optimization models fit. Chapters 2 and 3 provide an in-depth
discussion of linear programming, the topic that not only is most important in
its own right, given the vast majority of actual applications, but that introduces
the major features of all mathematical programming methodologies. Chapter 4
gives some insight as to how multiple criteria may be incorporated into the
optimization process.

Chapters 5 through 9 offer a range of special mathematical programming
structures which have found or are beginning to find “their place in the sun.”
Chapters 5 and 6 introduce combinatorial optimization, covering networks and
integer programming. Chapters 7, 8, and 9 deal with more advanced topics:
incorporating uncertainty into the optimization process, nonlinear optimi-
zation, and an approach for sequential decision problems-—dynamic program-
ming,.

February 1983 Roy Shapiro
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Chapter 1

MODELS AND OPTIMIZATION

In today’s world, it would be hard to find many successful managers,
engmeers, or social scientists who had not benefited from meaningful insights
into the “systems” with which they deal which were made possible by the
creation and use of models—those physical or mathematical abstractions that,
although simplified, reflect the key interactions of the system variables. In-
deed, one of thekey truths of “modern management” involves tie recognition
that today’s problem solving requires talents beyond those inherent in the
combination of intuition and experience. Central to the material in this book is
the concept of the model as an 1n51ght-produc1ng aid to managerial decision
making. In ghis vein, this prefatory chapter is meant to serve as a brief, but
important, initial discussion of modeling in general and optimization modeling
in particular, prior to the detailed study that begins in Chapter 2.

. Since the dawn of civilization, we have constructed simplified models of
our environment so as to understand that environment better. Modeling as a
means of analysis and, ultimately, insight, has been with us since our earliest
beginnings. The first model was, without a doubt, a physical model, con-
structed crudely. This early experimentation is a far cry from the analysis made
possible today to the scientist, engineer, orl nanager armed with a mathemati-
cal model, an optimization algorithn¢, and a computer. The advances in man-
agement science and the phenomenal developments in computer hardware
and software have created an environment where an understanding of the
construction and use of models is an indispensible part of the education of a
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mode~ manager. There is sc...cely an industry today that has not experienced
the siynificant impact of model-based planning and analysis. Unfortunately,
this impact has not always been positive. One key reason for this often
referred to “failure of management science models” is the refusal of manage-
ment to become involved in the modeling process. Models are too important to
be left to analysts alone. The manager, if he or she wishes the model to be
useful and used, must be part of the development. This requires some ground-
ing in the “art” of modeling and the “science” of solution techniques. It is to

- this end that this casebook 15 devoted.

We begin by suggesting a taxonomy of decision-making or problem-
solving approaches so as to see where the mathematical model fits in, and then
how optimization fits in the continuum of mathematical models.

A TAXONOMY OF PROBLEM-SOLVING APPROACHES

A team of aircraft engineers needs to determine apprepriate wing dimen-
sions and shape for a new aircraft which they have designed. Perhaps the
conceptually simplest approach to solving this problem is to build a variety of
aircraft, utilizing a range of alternative wing configurations. These aircraft
could then be subjected to extensive in-flight monitoring to determine the
performance characteristics of each. This approach—direct experimentation—
has the advantage of representational accuracy, that is, each wing being tested
is the actual alternative under consideration. On the other hand, the time,
expense, and difficulty that would be experienced in implementing this series
of experiments would severely limit the number of alternatives that could be
tested. As such, this approach would likely be deferred until all but a few
alternative designs had been screened out.

A second approach, one utilized extensively in the engineering sciences,
would be the construction of a variety of physical models. These models couid
then be subjected to a series of tests in simulated environments (e.g., a wind
tunnel) to predict how the real wing might perform in flight. Note that thjs
alternative offers a reduced level of representational accuracy. That is, in
certain ways, the actual wing would no doubt act differently in flight than the
model in a wind tunnel. On the other hand, this approach allows less time .
consuming and less costly evaluation of far more alternatives than would be
possible with direct experimentation.

A third approach would be the formulation of a mathematical model. The
mathematical model would replace with equations those characteristics of
performance the physical model would reveal in the wind tunnel. For example,
the mathematical model of wing performance would incorporate laws of mo-
tion, momentum, and air flow—in essence, equations that capture precisely
how the system variables interact. Of the three approaches discussed, this would
be the easiest, quickest, and least expensive to implement, especially with
modern day computers. Unfortunately it would also require the greatest de-
gree of simplification—it would provide the least representational accuracy.
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Indeed, the major difficulties in using a mathematical model are (1) assuring
that the model captures the key features of the system under study as well as
the interrelationships among these features that determine causes and effects,.
and (2) interpreting the “answer” to a simplified picture in a way that will
provide useful insight in dealing with the actual environment, which is far
more complex than the model reflects.

The major benefit of the mathematical model is its ability to evaluate a vast
array of alternatives in a fraction of the time and at a fraction of the cost
necessary for the construction and testing of the same number of physical
alternatives. Figure 1-1 illustrates these features.

While all three approaches might be feasible for the above example the
mathematical model may be the only feasible choice for the analysis of a variety
of managerial or social problems. Consider, for example, the plight of a man-
ager trying to determine an economically viable location for the firm’s new
factory. While it might be possible to actually construct a plant at a site under
consideration and then observe the economic impacts of that choice, such a
direct experimentation approach would be ludicrous. A physical model would
be of no help, since the performance to be monitored is economic, not subject to
physical laws. Instead, as illustrated by Figure 1-2, the manager might describe
the interaction of the system variables via a set of equations describing—for
example, transport of raw materials to the site, the production process, and the
distribution of finished goods to the firm’s warehouses, capturing the econom-
ics of each set of activities within those equations Similarly, competitive and
market forces might be modeled with a series of relationships that describe
how customers or competitors might react to specified actions by the firm. This
mathematical model might then be applied to a set of locations under consider-
ation and, for each, would predict its economic performance over time.

Direct Physical ) Mathematical
Experimentation Model Mode!

< >

L

1

Decreasing degree of representational accuracy

Decreasing cost/alternative tested

Increasing number of alternatives that can be exam.ned

Increasing difficuity in appivymg results to “'real worid"

FIGURE 1-1. A continuum of problem-solving approaches.
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Mathematical Mode!:
Oesign parameters a Equations of motion. Performance measures

air flow, etc.

Input Mode! Output

(@) An engineering model

Mathematical Model:

Relationships describing
interactions of and
economic implications of

~ Parameters of new
location: physical coordinates
land values, labor rates, etc.

Economic
performance

» Internal factors (transport measures

rates, production parameters,

fixed and variable costs, etc.)
» Market forces (demand, etc.)
+ Competitive forces

(5) A managerial model

FIGURE 1-2. Input-output schematics for two models.

EVALUATION VERSUS OPTIMIZATION

A further categorization of problem solving approaches is helpful in
understanding mathematical models. The preceding examples have been ex-
amples of evaluative models. That is, they operate by evaluating alternatives
one at a time---they neither generate alternatives nor do they choose the
“best.” Those activities are undertaken by the human problem solver or deci-
sion maker. Simulations are perhaps the best known and most commonly used
examples. of evaluative models. They permit a great deal of flexibility, and a
creative modeler with a good understanding of the underlying system can
guarantee a relatively high level of representational accuracy. On the other
hand, there is a practical limit to the number of alternatives that can be
evaluated. Typically, evaluative models are used in a satisficing mode; that is,
the analyst or manager will evaluate candidate plans until he or she is satisfied
with the performance of one or more, rather than in an oplimizing mode, where
the best possible plan is determined. With an evaluative model, there can be
no guarantee that the chosen alternative—the best alternative evaluated—is
the best possidle alternative. That guarantee requires the use of an optimiza-
tion model.

Most simply, an optimization model is an evaluative model with added
features. Those added capabilities are:

1. The ability to automatically generate new alternatives.
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2. The ab111ty to test whether a gwen altematwe that has just been evalu-
ated is the “best.”

The first step in constructing an optimization model is the same as that
necessary in constructing an evaluative model-the description of the system:
the specification of the set of equations (or inequalities) that characterizes the
1nterrelahonsh1p of key.system variables: Most of the effort in any analysis
will, in practice, be devoted to understanding the system and translating that
understanding into quantitative form. This is as it should be; a model without
understanding has little value.

The second step is the adoption of a measure of system effectiveness, a
measure by which we may ]udge, Plan A is better than Plan B.” Sometimes, in
a physical or simplified economic system, the criterion to be chosen is easy—
efficiency, speed, cost, or profit. Often, however, in a social, political, or more
realistic economic system, conflicting objectives make the choice of any one
criterion difficult: Decreased inflation or decreased unempioyment? A healthy
economy or a healthy natural environment? Even for the individual firm, there
are issues to be resolved—for example, short-term gain or long-term stability?
Chapter 4 will suggest optimization methods to help ease this criterion-selec-
tion difficulty. '

Step three is the choice of an algorithm that will optimize; that is, consis-
tent with any restrictions which may be imposed by or on the system, as
embodied by the mathematical description of that system (step one), the
algorithm will choose that plan that, when evaluated along the dimensions
suggested by the chosen measure of effectiveness (step two), achieves the best
score of gl possible feasible plans. We might think of optimization algorithms
as operating as shown by the schematic flow chart of Figure 1-3. The process
starts with an initial candidate plan, either user-generatéél or generated by the
algorithm itself. The parameters {e.g., operating levels for the various activi-
ties) of the plan are fed to an evaluative model that, through the mathematics
which describe the interrelationships among the system variables, “scores” the

e Description of system; —_
— measure of sys tem effectiveness
‘L i
Candidate Pian Plan Evaluative Optimal
Generator parameters Mode! Optim aMy
S ——

“generate new plan”

FIGURE 1-3. An optimization schematic.



6

MODELS AND OPTIMIZATION

plan with respect to the measure of system effectiveness specified. Nextis a key
to the optimization algorithm’s success—a test for optimality, a test that deter-
mines whether any further improvement (with respect to the chosen criterion)
is possible. If not, then the candidate plan under study is optimal. If improve-
ment is possible, the algorithm cycles back and generates a new candidate
plan, one that is created within the restrictions or guidelines embodied in the
system description. Especially successful algorithms guarantee that the new
plan will provide better performance (i.e., will score better) than the previous
plan. Another key success factor is the (possibly emp1r1cal) guarantee that this
cycling will end quickly.

THE MODELING PROCESS: A FRAMEWORK FOR ANALYSIS

This book focuses less on the theory behind the specific details of various
optimization algorithms than on the practical considerations involved in the
recognition and formulation of appropriate models and the subsequent analy-
sis of the economic and managerial implications of the solution results. The
schematic “bow tie” in Figure 1-4 illustrates our view of the modeling process:
A necessary precursor to the formulation or use of a mathematical model is
understanding: What drives the system under consideration? What are the
key factors in predicting system behavior? What is the managerially relevant
problem? What are the key measures of success? Only after these questions

INSIGHT

Real World

| ] ) ]
; i o1 i ;
Understanding Formufation Solution Interpretation

FIGURE 1-4. *‘Bow-tie’”" schematic of the modeling process.
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have been answered can modeling begin. Formulating the model consists
conceptually of extracting from complex, real-world situation those variables
and relationships essential to the operation of the system of interest, and of
narrowing down the multitude of variables and issues to those crucial to
solving the problem at hand. This simplification process is key: not enough
simplification and, at best, solution will be overly time-consuming and costly;
at worst, solution techniques will prove to be unable to handle the model'd
complexity or size. Too much simplification and the ultimate users of the model
results will be unwilling to use them due to the lack of realism and accuracy in
the model specification. :

Although, for ease of illustration, we often discuss formulation as separate
from underlying relationships that drive the system, in practice the formula-
tion exercise often greatly increases understanding. There are countless exam-
ples of model development in corporate settings where the true value of the
model comes from the discipline imposed by formulating that model. Involved
managers who must express their understanding in quantitative terms often
find that their understanding of the system has increased. Questioning of
underlying assumptions, quantifying perceptions, and specifying relation-
ships increases insight, in and of itself.

Moving forward as shown in Figure 1-4, formulation is followed by solu-
tion. First, the selection of the appropriate solution methodology given the
characteristics of the formulated system relanonshxps, second, the collection of
data—in practice, the most time-consuming effort; and, third, the actual run-
ning of the appropriate algorithm to produce a numerical ““solution.”

Altogether too many courses and textbooks stop at this point, having
given short shrift to formulation and focussing on solution algorithms. In a
managerial context this is disastrous. Itis perhaps the source of the often heard
complaint about the analyst who; after having disappeared for months to
formulate a complex optimization model, drops a two-inch thick stack of
computer output on the manager’s desk, cheerfully exclaiming, ““Here’s the
answer.” The “bow-tie”’ in Figure 1-4 indicates, however, that at this point we
a~» only halfway through the process—that we have no answers, only solution
results. These solution results require interpretation. This interpretive task is,
in some sense, areversal of the formulation task. Whereas formulation requires
that we narrow down the broad expanse of the real-world system, interpreta-
tion suggests broadening the narrow meaning of the solution results to apply
them to the actual situation.! Interpretation involves recognizing the simplifi-
cations made and checking the solution results against them, verifying that
nothing of import was lost in the translation. Interpretation is truly an art.
Certainly the most difficult of the three modeling tasks, its goal is to take

solution results—a set of numbers—and create insight into the management
problem, insight that will be key in the ultimate management decision.

'This simplification or narrowing of the vast array ur real world factors, followed by the interpreta-
tion or expansion of the numerical solution results, gives rise to the “bow-tie” shape of Figure 1-4.
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MATHEMATICAL PROGRAMMING

The material in this book covers the class of optimization models that has
had the widest application to management problems—mathematical program-
ming models. These models, probably the best developed and most used of
management science techniques—certainly the most successful—are con-
cerned with allocating scarce resources to competitive activities in a way that s
“best” for the enterprise as a whole. The resource allocation problem is one of
the most important decision problems managers face—how to allocate produc-
tive capacity or scarce materials to a variety of possible products, how to
allocate available finances among various capital investment opportunities,
how to allocate manpower among possible R&D projects, and so forth. In view
of the difficulties frequently encountered in making these decisions as well as
their importance, managers are grateful for tools to bring to bear for aid in the
decision process. This, perhaps, explains the success mathematical program-
ming has had.

Note that the example applications in the paragraph above all have several
characteristics in common:

1. All require a quantitative specification of how much of the available
resources are to be allocated to each of the competing activities.

2. For each, there is implicitly some objective(s) to be optimized. One
focus of this book is to help the manager make the objective or objec-
tives explicit.

3. For each, there are constraints limiting the amount of resources which
can be “consumed” by the competing activities as well as, possibly,
additional constraints restricting the makeup of the portfolio of activi-
ties the manager can choose.

Formally, mathematical programming seeks to determine the values of certain
decision variables® (alternatively, the levels of specified activities) subject to
various restrictions (constraints) that are expressed as equalities or inequalities
in terms of the decision variables. The constraints, in practice, reflect financial,
availability, technological, organizational, or political considerations as well as
a multitude of others. The values of the decision variables are determined so as
to optimize (minimize or maximize) some chosen criterion that, when ex-
pressed in terms of the variables, is called the objective function (or simply the
objective). The form of the objective, the constraints, and the values the
decision variable may take determine the type of mathematical programming
algorithm that need be used.

*The optimal values of the decision variables represent the optimal plan or program; thus the origin
of the term “mathematical programming.”
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For example, if all mathematical#elationships may be expressed by linear
functions, the model is a linear programming model. Linear programming is
the-most strikingly successful of all management science applications. Its ease
of_use and the wealth of sensitivity information provided along with the
optimal solution contribute to its success. Chapters 2 and 3 deal with these
models by discussing, in some detail, the key features of linear programming.
Twe format of these two chapters mirror the three tasks discussed in the
preceding section—formulation (Chapter 2), solution, and interpretation (both
covered in Chapter 3). Chapter 4 introduces multicriteria issues and ways of
dealing with them. ‘ _

In the remainder of the book we systematically relax the assumptions that
underlie continuous linear programming. Chapters 5 and 6 focus on combina-
torial optimization—situations in which we wish to optimize over discrete
classes or sets of items, where the solution sought specifies the best combina-
tion or grouping of these discrete entities. In this case, “yes-no” variables are
key. We make the transition between linear programming and combinatorial
optimization by considering a class of optimization models that is a special case
ofboth model categories—network models. These structures, in use since the
late 1940s, are discussed in Chapter 5. Chapter 6 introduces integer program-
ming, a class of optimization models of growing importance. Hitherto unsolv-
able except for relatively small models, the rapid increase in speed and de-
créase_in cost which characterizes-¢efputer technology of the 1970s and

- #980s has made the solution of largér and larger models possible.
~ Chapters7, 8, and 9 deal, quite briefly, with a set of methodologies that, as
X;t have had only a minor impact-on business practice, but, as computer
cdpabilities continua to increase and computer costs continue their descent,
these nov -advanced topics will find their way more and more into managerial
application. All are tools of which the manager of tomorrow should be cogni-
zant. Chapter 7 relaxes the assumption of deterministic coefficients and intro-
duces uncertainty explicitly into the linear programming framework. Chapter 8
relaxes the assumption of linearity and briefly surveys the broad expanse of
nonlinear programming. Chapter 9 considers sequential decision problems,
both deterministic and stochastic, introducing dynamic programming.

As is said above, this book focuses on formulation and interpretation, not
on algorithmic details. Nevertheless, the serious student of optimization mod-
els will want some background knowledge of the Simplex method, George
Dantzig’s 1947 discovery that forms the core of all mathematical programming;
perhaps the most successful algoritl devised in the last half-century. Ap-
pendix A gives a brief treatment of tHT8 algorithm, at a level that requires little
mathematical sophistication. Appendix B illustrates, for the interested reader,
another important solution methodology—the transportation method. Like
the Simplex method, this algorithm for solving the transportation problem—
probably the most often used and successful special linear programming struc-
ture-—has historical as well as practical significance. Appendix C discusses a



