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Abstract

In this thesis I will present my PhD research work, focusing mainly on
financial modelling of asset’ s volatility and the pricing of contingent

claims (financial derivatives) , which consists of four topics:

1. Several changing volatility models are introduced and the pricing of
European options is derived under these models ;

2. A general local stochastic volatility model with stochastic interest rates
(IR) is studied in the modelling of foreign exchange (FX) rates. The pricing
of FX options under this model is examined through the use of an asymptotic
expansion method, based on Watanabe — Yoshida theory. The perfect/partial
hedging issues of FX options in the presence of local stochastic volatility and
stochastic IRs are also considered. Finally, the impact of stochastic volatility
on the pricing of FX — IR structured products (PRDCs) is examined;

3. A new method of non — biased Monte Carlo simulation for a stochastic
volatility model (Heston Model) is proposed;

4. The LIBOR/swap market model with stochastic volatility and jump
processes is studied, as well as the pricing of interest rate options under

that model.
In conclusion, some future research topics are suggested.

Key words: Changing Volatility Models, Stochastic Volatility Models, Local
Stochastic  Volatility Models, Hedging Greeks, Jump Diffusion Models,
Implied Volatility, Fourier Transform, Asymptotic Expansion, LIBOR Market
Model, Monte Carlo Simulation, Saddle Point Approximation.
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1. General Introduction, Changing Volatility
Models and European Options Pricing

1.1 General Introduction

This thesis of my Ph. D work in financial mathematics mainly focuses on
financial modeling with non-constant volatility and the pricing of financial
derivatives. Financial modelling with non-constant volatility has been a
widely studied topic for more than 20 years (cf. [2], [128], [129],
etc. ) and has become more so in this volatile market environment we are
experiencing, since the financial meltdown in late 2007. How to accurately
and effectively price and risk manage the derivative products has posted an

ever challenging task for academics and practitioners alike.

In this thesis, my research begins with the introduction of changing
volatility models, which are special cases of local wvolatility models
introduced by Dupire (cf. [130]), Derman and Kani (cf. [131]).
The introduction of these models has got its own economic meanings, and
subsequently, analytic formulae for European option prices under the
model settings are obtained. These specific models and the pricing of
European options have not been studied before, to the author’s best
knowledge, and the model implementation can be quickly put into
practice. At the end of the chapter, a simple addition of incomplete

information on the volatility term extends the model setting to another
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category of non-constant volatility models: stochastic volatility models and
more general, local-stochastic volatility models, in which the the level of
asset volatility not only depends on the level of asset price but also is

driven by its own stochastic process.

Local-stochastic volatility models, while their set-up has been discussed in
[14], the analytical (or semi-analytical) formulae for European option
prices have only been obtained for several specific forms, e. g. SABR
model ( [30]), Zhou Model ( [28]), among others. Chapter 2 mainly
discusses the model set-up of stochastic volatility and local-stochastic
volatility models, from the general framework ( follows Romano and
Touzi’s setting) to the summary of recent works of different models. At the
end of the chapter the author derives the adjustments to the greeks’
calculation in the setting of non-constant implied volatility. These
adjustments are crucial for the implementation of local-stochastic volatility

models and management of volatility risk.

My major work in this thesis begins from chapter 3, where the first part
introduces a general form of foreign-exchange (FX) rate modeling with
local-stochastic volatility and two stochastic bond price processes. This
local-stochastic volatility process is general that it encompasses all the
local-stochastic volatility models summarized in chapter 2, such that the
specific form of the model is up to the user’s preference. Then the pricing of
FX vanilla options under this general setting is examined through the use of
an asymptotic expansion method, based on Watanabe-Yoshida theory
( [95]). This semi-analytical formula is accurate for the pricing of short
and medium expiry options and easy to implement, as shown in the

appendix.

Later in chapter 2 another model with stochastic interest rates, stochastic

volatility and jump process is proposed and the pricing of FX vanilla option
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can be derived through Fourier Transform approach. This modelling approach
is also general that it includes several forms of stochastic volatility models,
jump process models and stochastic interest rate models. The pricing formula
is accurate even for long maturity options. Then the model calibration and
implementation are applied on a complex structured product on FX rate,

namely the PRDC.

The last part of chapter 2 discusses the perfect/partial hedging issues of FX
options in the presence of local stochastic volatility and stochastic interest
rates, as well as the hedging error analysis in the partial hedging
process. Also, the impact of stochastic volatility on the pricing of FX-IR
structured products (PRDCs) is examined. These two general models are
new at the time of writing, and the model calibration, implementation as
well as the extensive discussion on hedging process of FX options are first

time seen in literature.

In the financial practice, Monte-Carlo simulation has gained more and
more importance in the valuation and risk-management of derivatives,
especially the complex structured products. How to effectively simulate
asset price process with stochastic volatility has been a widely studied area
in financial engineering. In chapter 3 a new method of non-biased Monte
Carlo simulation for a popular stochastic volatility model (Heston Model)
is proposed by the author, by the use of the powerful Saddle point method

borrowed from statistics.

The last chapter studies the LIBOR/swap market model with stochastic
volatility and jump process, as well as the pricing of interest rate options
under the model. Here a new model of bond price is proposed, with
stochastic volatility and a general jump process (marked point process)
and subsequently the LIBOR forward rate model and swap rate model are

derived, by the use of change of measure and various approximation
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techniques. Finally the pricing formulae of vanilla options in forward rate

markets and swap rate markets are derived through Fourier Transform and

approximation methods.

1.2 Introduction to Changing Volatility Models

In the financial markets, the volatility of financial assets is changing
rather than keeping constant. A simple and realistic case is that volatility
depends on the state of the asset and/or its movement path, which will
produce incomplete information for the pricing and hedging of contingent
claims (cf. [17]). A few special cases will be studied in this chapter
including the changing volatility models of the log-normal and Ornstein-
Uhlenbeck types. The pricing and hedging results for European optiens will
be provided.

1.3 Model Completeness and European Option Pricing

Consider a probability space (Q, P, F,) over a finite time interval [0,
T] . The market model consists of a risk-free asset B (¢) and a risky

asset S (¢) for time ¢=0.

We consider a model given by
dS(t) = uS(e)de + o (£)S(1)dW (1) (1.1)
dB(t) = rB(¢t)dt (1.2)

under the real world measure P.

If we define the volatility process t—o (t) e L£* by
a(t) = o log, g, + oyl g ool + ol orlont (1.3)
Where o, , o, are constants and known at time 0, T, is fixed and T,

Fy, the probability set E is also pre-specified.

We consider the case in which E: = {we(): Sr (w) =B} e F with
barrier B e F,.



