THE

MOS System

Olof Engstrom




The MOS System

OLOF ENGSTROM

Chalmers University of Technology, Sweden

% ) UNIVERSITY PRESS




CAMBRIDGE

UNIVERSITY PRESS
University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107005938

© Cambridge University Press 2014

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2014
Printed in the United Kingdom by TJ International Ltd, Padstow Cornwall
A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data
Engstrom, Olof.
The MOS system / Olof Engstrom, Chalmers University of Technology, Sweden.
pages cm
Includes bibliographical references and index.
ISBN 978-1-107-00593-8 (Hardback)
1. Metal oxide semiconductors—Mathematical models. 2. Semiconductors—Mathematical models.
1. Title. II. Title: Metal oxide semiconductor system.
TK7871.99.M44E54 2014
621.3815'28-dc23 2014009750

ISBN 978-1-107-00593-8 Hardback

The cover image is an example of multi-parameter admittance spectroscopy
(MPAS, Chapter 6) from an AI/HfO,/Si structure as measured by Dr. Bahaman Raeissi.

Cambridge University Press has no responsibility for the persistence or accuracy
of URLSs for external or third-party internet websites referred to in this publication,
and does not guarantee that any content on such websites is, or will remain,
accurate or appropriate.



The MOS System

This detailed and up-to-date guide to modern MOS structures describes important tools,
cutting-edge models, novel phenomena, and current challenges in measuring and
improving the control of future MOS systems for transistor channels.

Building up from basic electrostatics, it introduces the ideal MOS system, physical
and electrical properties of high-k oxides, their dielectric constants, and energy offsets
to semiconductors and metals, before moving on to electrical and physical characteriza-
tion methods for high-k dielectric materials. Finally, real MOS systems are introduced:
high-k dielectrics and interlayers, the influence of phonon dynamics, interface states and
bulk traps, effective metal work functions, gate leakage phenomena, and high mobility
channel materials.

Abstract concepts are supported by practical examples and critical comparison,
encouraging an intuitive understanding of the principles at work, and presented along-
side recent theoretical and experimental results, making this the ideal companion for
researchers, graduate students, and industrial development engineers working in
nanoelectronics.

Olof Engstrom is Professor Emeritus of Microtechnology and Nanoscience, Chalmers
University of Technology, Géteborg, Sweden, having formerly held positions in indus-
trial high power devices, MOS technology and sensors. His research focuses on semi-
conductor quantum structures and interfaces. He is a member of the Royal Swedish
Academy of Engineering Sciences and Societas Scientarum Fennica.
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Preface

The motivation for writing this book has grown out of a feeling that a novel, compiled
description of more recent results within the MOS area is needed after the often-cited
work from 1982, MOS (Metal Oxide Semiconductor) Physics and Technology, by E. H.
Nicollian and J. R Brews (New York: John Wiley & Sons). Their work has been of
extensive use within the MOS community. However, it only describes silicon dioxide
structures and their approach follows a practical engineering path.

In the present text, I have included the most important consequences of using MOS
insulators with higher dielectric constants, the so-called high-k oxides. Furthermore,
since these insulators have given rise to new challenges from the point of view of
materials physics, I have tried to start from a more physical basis. Still, my objective has
been to write for a circle of readers including engineers, graduate students and
researchers.

The book would not have come about without injections of inspiration from friends
and colleagues, who have provided valuable discussion, help and up-to-date research
during the preparation and writing of the text. Steve Hall and colleagues at the Univer-
sity of Liverpool, Ivona Mitrovic and Naser Sadeghi together with Henryk Przewlocki
at the Institute of Electron Technology in Warsaw, and my former student, Bahman
Raeissi, have filled in fuel and criticism for keeping up my typing. Specific and
educational discussions on e-mail with Valery Afanas’ev, Douglas Buchanan, Jim
Chelikowsky, Paul Hurley, Pat Lenahan, Winfried Monch, Luca Selmi and Andre
Stesmans are highly appreciated. Also, financial backing from the Department of
Microtechnology and Nanoscience (MC2) at Chalmers is acknowledged together
with the greatly valued assistance from colleagues of MC2 in keeping up my research
during the writing period: Dag Winkler, Jan Stake, Peter Modh, Goéran Petersson and
Fredrik Henriksen.

Special thanks are directed to Julie Lanchashire, Mia Balashova and Elizabeth Horne
at Cambridge University Press, for their patience with my continually postponed
deadlines, and to David Hensley for linguistic assistance.

I dedicate this book to my wife, Anita, for her support and her persistence in living
with a person, who for a long time has had an affair with his laptop.

Olof Engstrém
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Introduction

1.1

The early days of MOS technology

In the past couple of decades, the increasing influence of electronics on human life has
promoted MOS technology to a role of similar significance for cultural change as, for
example, electric power transmission and combustion engine transport. The basic
device for this development, the metal-oxide-semiconductor field-effect transistor
(MOSFET), was patented in 1928 by Lilienfeld. The invention had to wait for realiza-
tion until 1961 when Khang at Bell Telephone Labs first demonstrated a working
device. Until then, one of the main hurdles for implementing Lilienfeld’s idea was
finding a material combination such that a surface channel for charge carriers could be
brought about by an external electric field. A charge-free surface or interface was
needed, which required a structure free of charge carrier traps. Here, silicon technology
opened new possibilities. By thermally oxidizing the surface of silicon crystals into
Si0,, an insulator was obtained with eminent properties and with a low concentration of
traps at the SiO,/Si interface and in its volume. At the beginning of the 1960s, a
considerable amount of work was performed to optimize the properties of SiO, prepared
this way and to understand the metal-oxide—semiconductor system. Important contri-
butions to the understanding of the MOS system came from a group of William
Shockley’s former disciples at Fairchild Semiconductor in Palo Alto. In the same
period, activities were also initiated at the IBM Thomas Watson Research Center, at
the Bell labs and at some universities in the USA.

In parallel with this research on silicon dioxide, the MOSFET was developed. When
a voltage is applied to the gate electrode of a MOS structure, a bending of the
semiconductor energy bands occurs such that charge carriers can be injected from a
source contact and collected by a drain contact on the opposite side of the gate.
A channel is then opened at the Si/SiO, interface, and the current between source and
drain can be regulated by the voltage on the gate, producing transistor action. After
mastering the materials problems, this ingenious and simple geometrical design con-
quered other technologies for logic circuitry. The tremendous development potential of
the device can be realized by considering that the channel lengths of the original
MOSFETs were tens of microns while in today’s transistor development, the corres-
ponding distance is a couple of tens of nanometers. This was the ramp that launched the
expansion of communications and computation present everywhere in global society
today. At the time of writing this book, no serious competing device structure has been
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1.3
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proposed to replace the MOSFET for future applications. Observers of the field forecast
that MOS technology will continue to dominate electronics applications for the foresee-
able future.

Nature’s freak of fate

As the MOS system operates by creating a channel between the insulator and the
semiconductor for charge carrier transport, this sets high demands on the degree of
perfection at this interface. Oxides used as the insulator material are generally amorph-
ous, while the semiconductor material is crystalline. Therefore, the atomic structure at
the interface between these two material types contains geometrical misfits, and thus
imperfections due to open electron orbitals, which give rise to electron traps. Such
“dangling bonds™ are important sources of charge at insulator/semiconductor interfaces
and influence the transport and stability properties of MOSFETs. At its beginning and
for a long period of time, the whole MOS concept was leaning on the possibility to
prepare the gate oxide by thermal oxidation of the silicon crystal surface. By a freak of
nature, the SiO,/Si interface built up that way. Not only existed a semiconductor
material based on an element with a high abundance on earth, with a crystal structure
of high mechanical strength and an energy bandgap well suited for electronic applica-
tions, but its natural oxide was almost perfect for use as an insulator! These materials
properties together with the simple and flexible design of the MOSFET are the linchpins
that have carried MOS technology to its present position.

Silicon dioxide becomes inadequate

In the downscaling of device dimensions, which in the past four or five decades has
roughly followed Moore’s law and resulted in a rapidly increasing number of transistors
per chip, one of the main issues has been to design the properties of the transistor
channel. Decreasing the distance between source and drain, thus making the depletion
regions of these two p-n junctions approach each other, gives rise to increased current
leakage and decreased threshold voltage. This problem, known as the “short channel
effect” and occurring for each new technology generation, was solved by introducing
sophisticated doping geometries for the source and drain contacts and by increasing the
channel doping. However, the latter measure, which serves to decrease transistor
leakage, has a detrimental influence on the capacitive coupling between the gate
and the channel. This in turn influences the ability of the transistor to switch between
its on- and off-states.

The switching capacity is one of the most important properties of the MOSFET. It
depends on the characteristics of the MOS system constituting the gate/channel com-
bination. For a given change in gate voltage, a high share needs to be supplied to the
semiconductor in order to flip its energy bands efficiently and create or eliminate
the channel. This voltage partition depends on the relation between the capacitances
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of the gate oxide and of the channel region, respectively. A high ratio between these two
quantities is desirable. However, increasing the channel doping in order to solve the
problem of the short channel effect will increase the channel capacitance for a given
voltage drop and thus impair the semiconductor’s switching capability. The remedy is
to increase the oxide capacitance. If SiO, is kept as the insulator material, this means
that its thickness needs to be decreased. Such steps were part of transistor development
until the SiO, layer thickness approached the lower limit of about 1.5 nm, where the
leakage current between gate and channel could no longer be accepted. At this point, the
way to proceed included the use of oxynitrides, thus increasing the dielectric constants a
couple of units from the value of 3.9 for SiO,. For a couple of technology generations,
this allowed the use of a thicker insulator with high enough capacitance and low enough
leakage. Finally, in order to be able to continue into channel lengths shorter than about
40 nm, SiO,-based gate insulators could no longer be used. A drastic step had to be
taken by changing to materials based on elements from other parts of the periodic table,
the so-called “high-k” dielectrics, where k stands for the dielectric constant. The first
development in this area was made for the 45 nm CMOS node, where a “hafnium-
based” oxide was used. For the continued race of downscaling, therefore, the problem
of finding new gate insulator materials will be one of the most important issues.

This necessary turn into novel materials for MOS development has been reflected in
other parts of the transistor architecture. In the early period of this technology escal-
ation, the atomic species used were mainly silicon, oxygen, aluminum, boron, arsenic
and phosphorus. Prerequisites of more recent progress have been the use of, for
example, copper and low-k materials for interconnects, and silicides based on various
metals and different metal combinations for gate contacts; the search for novel metal
oxides has included a large part of the transition and rare-earth metal range of the
periodic system.

High-k dielectrics

The search for suitable materials to satisfy the gate functions of future MOS transistors
has led the scientific semiconductor community on a quest through the periodic system
to find the “Dielectric Grail.” The goal is a material with acceptable energy offset values
between the energy bands of the dielectric and the silicon crystal while, at the same
time, having a high enough dielectric constant. The former quantity influences leakage
for a given thickness, the latter secures channel coupling for a given leakage. So far for
CMOS applications, most of the efforts have been limited to metal oxides. The change
from the extremely well-mastered thermal SiO, material to an oxide based on metals
among the transition or rare-earth series has revealed obstacles that were unnoticeable
using traditional technology. As well as problems of chemical stability between these
new “high-k” oxides and the silicon substrate, issues of crystallization, sensitivity to
humid environment, higher concentrations of oxide traps and interface states have been
encountered. Driven by technology, this has made it important to understand their
microscopic properties from the chemical, physical and electrical points of view.



Introduction

15

A common attribute of high-k oxide films deposited on silicon is the occurrence of an
SiO, interlayer between the high-k material and the silicon crystal. This evokes interface
electron state properties similar to those at thermal SiO,/Si interfaces. Even if the
interlayer lowers the effective k-value of the film, it often gives better conditions for a
transistor channel than those offered by a direct interface due to lower charge carrier
scattering by the former. However, it must be paid for by an extra interface between the
SiO, and the high-k material. As the total physical thickness of the film is in the range of
a couple of nanometers, on this length scale the transition from SiO, to the high-k
material can hardly be considered abrupt. It is found to include a transition region with
undefined stoichiometry and thus with possible structural instabilities.

In order to use a convenient measure when comparing the thicknesses of insulators
with different dielectric constants, the concept of “equivalent oxide thickness” (EOT)
has been introduced. This is the thickness that a layer of SiO, would have for the same
capacitance as a certain high-k layer. In order to fulfill the demands on transistors for the
22 nm node and beyond, the EOT values must be below 1 nm. The SiO, interlayer has a
k-value of roughly that same magnitude as SiO, and decreases the effective dielectric
constant for the entire high-k stack. As it often appears with a thickness of about 1 nm, it
must be eliminated in future applications. One possible solution to this problem has
been the replacement of SiOy by silicate.

Characterizing the MOS system

As the MOS system constitutes a capacitive device, a natural way to investigate its
properties from an electrical point of view is by studying its admittance. From such
measurements, capacitance and conductance as functions of voltage and frequency can
be extracted and used as diagnostic data. Information about the properties of interface
states and oxide charge can also be deduced from such results. Consequently, two
traditional methods in wide use for MOS characterization are the capacitance versus
voltage (C-V) and the “conductance method.” In the pioneering work of the 1960s on
understanding the physical properties of MOS structures, the C-V method was used to
establish the main qualities of oxide/silicon interfaces. Based on this tool, the import-
ance of interface state densities and oxide charge were revealed. Later, this technique
was joined by the conductance method, where the real part of the MOS admittance was
shown to complete data from the C—V method. From these initiatives, a number of
variations and a huge amount of applications have blossomed for a continued detailed
understanding of the technologically useful MOS structure.

The conductance method has lived through a discursive development after the first
preliminary study, published in 1965 by Nicollian and Goetzberger. In that original
work, the interpretation of measured data was oversimplified and a more realistic
treatment followed by the same authors in a later published paper. The conductance
method is based on resonance phenomena between the frequency of a probing voltage
from the measurement set-up and the rate by which charge carriers are emitted from and
captured to interface states. From such data, interface state densities and capture cross



