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Preface

Pour le cinquiéme congreés de la série, COMPSTAT 82 réunit environ 500 participants
d’origines scientifiques et géographiques trés variées, prouvant 4 Pévidence 1'intérét persis-
tant de la communauté scientifique pour tous les problémes de calculs statistiques.

Le Comité de Programme chargé de 1’organisation scientifique du Congrés était com-
posé de: o
S. Apelt (République démocratique d’Allemagne) — A. Bjorck (Suéde) — H. Caussinus
(France), Président — Y. Escoufier (France) — A. de Falguerolles (France), Secrétaire —
J.W. Frane (US.A)) — J. Gordesch (République Fédérale d’Allemagne) — Th. Havrinek
(Tchéchoslovaquie) — N. Lauro (Italie) — C. Millier (France) — R.J. Mokken (Pays-Bas) —
R. Tomassone (France) — D. Wishart (Royaume Uni) v

Ce Comité a décidé d’augmenter le nombre des conférenciers invités, cherchant de la
sorte une représentation des diverses écoles ainsi que I'introduction de nouveaux thémes.
La tache la plus difficile a ensuite été de sélectionner une soixantaine de contributions
parmi 250 soumissions. La encore le Comité de Programme s’est efforcé de favoriser des
voies qui semblaient les plus nouvelles et a essayé de maintenir une bonne répartition
scientifique et géographique. Cependant, comme dans les précédents congrés COMPSTAT,
il a donné la préférence aux propositions clairement marquées simultanément du double
aspect Statistique et Calcul. Dans bien des cas, ces deux aspects sont trés liés rendant en
particulier difficije et peu pertinente toute classification fine des contributions. Pour cette
raison, nous n’avons pas cherché 4 séparer cet ouvrage en Chapitres si ce n’est la distinc-
tion habituelle en communications invitées et libres.

Les contributions de bonne valeur qui n’avaient pu étre retenues faute de place ont pu
s'ajouter aux affiches (posters) proposées. Elles font 'objet d’affiches et communications

“courtes. Une nouveauté de COMPSTAT 82 est I'édition (par Physica Verlag) d’un volume
complémentaire contenant les résumés de ces travaux.

Comme précédemment, des démonstrations de logiciels ont été organisées tout le long
du Congres afin de compléter le programme scientifique. Des résumés descriptifs de ces
démonstrations ont été publiés par le Comité d’Organisation.

Fifth in the series;, COMPSTAT 82 gathered about 500 participants from very di-
versified scientific and geographical origins, thus proving the continuing surge of interest
in statistical computing,

The programme for COMPSTAT 82 was selected by an international committee, the
members being: o
8. Apelt (German Democratic Republic) — A. Bjorck (Sweden) — H. Caussinus (France),

- President — Y. Escoufier (France) ~ A. de Falguerolles (France), Secretary — J.W. Frane
(U.S.A.] — J. Gordesch (Federal Republic of Germany) — Th. Havrének (Czechoslovakia)
— N. Lauro (Italy] — C. Millier (France) — R.J. Mokken (The Netherlands) — R. Tomas-
sone (France) — D. Wishart (United Kingdom |



This committee decided to increase the number of invited speakers in order to achie
the representation of different schools and the introduction of new themes. The mc
difficult task was then to select about sixty papers out of 250 projects. Here also t
committee tried to support novel tracks and to maintain a satisfactory scientific and ge
graphical representation. Like in other COMPSTAT meetings, the committee gave its pre
erence to papers simultaneously containing both statistical and computational aspect
In many cases, these two aspects are very linked, thus making difficult and somewh
irrelevant any refined classification of the contributions. Therefore this book is not ¢
vided into chapters apart from the usual distinction between invited papers and contri
uted papers.

Good contributions which could not be retained by lack of space were added to su
mitted posters. They are presented in the format of short communications and poster
A COMPSTAT 82 novelty is the editing (by Physica Verlag) of a supplementary volun
containing summaries of these contributions.

Like in former COMPSTAT, demonstrations of statistical softm and computir
Jacilitles have been organized. Summaries of these demonstrations hcn been publishe
- by the organizing committee.

Toulouse, juin 1982 H. Caussim

P. Ettinge
R. Tomasson
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On Some Problems in Analysing Non-orthogonal Designs

T. Califski, Academy of Agriculture, Poznaf, Poland

SUMMARY: Digcussion on some controversial probdlems in asnzlysing and
interpreting data from non-orthogonal designs ig revieved and certain sug-
‘gestiong are made on how to overcome the difficulties. Geometric approach
is adopted to show possible reconcilations,

KEYWORDS: non~orthogonal degigns, unbslanced data, non-orthogonal sna-
lysia of vartance, linear models. .

1. Introduction

Assoclation of a linear model with the experimental data is fundamen-
tal for the statigtical analysis in many fielde of research. Though the ori-
gin of the hethodology dates back to Gauss (1809) and the literature on the
subject is vast, not many statistical techniques have cauged s0 much contro-
Versy as the least-squares fit of a linear model. In fact, as far as the
analysis of variance is applied to a prdﬁerly balancgd experimental desfgn
there 1s a common agreement on how the analysis should be perforned and how
its results can be interpreted (although there may be disegreenents when '
distinguighing between the fixed effects and the random effects models ~ the
matter that will hot be discuesed here). The troubles start when the data
are unbalanced and the usual orthogonal analysis of variance can not be ap-
plied uniquely. As Bock and Brandt (1980) put 1t, "to move from balanced to
unbalanced designs in analysies of variance is not only to lose the eage
of computation of the orthosonal solution, but also th intuitively ap-
pealing equivalenca of the observed marginal means t; the least-equares es~
timates of effects and, perhaps more important, alsoc the uhiqueneks of the
additive partition of the total sum of squares".

As the unity of method and clarity of interpretation disapvear, various
diverging approaches are adopted and controversies energe.

In this paper attention is drawn to certain controversial isesues that
may influence preparations of analysis of variance programa. An attenpt is

COMPSTAT 1962 © Physica-Verkeg, Vieusa for IASC (istaenstionsl Asocietion for Stuistissl Computing), 1982
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made to clarify some of the problems by using the geometric aprroach to

linear models.

2. S'o_ge of the Controversies

As an illustration to one of the most controversial problems, let us
looix at the results obtained when applying five different smalysis of vari-
ance programs to the same set of data coming from an unbalanced 2x5 (Sex x
Religion) classification originally analysed by Francis (19?3) -and then sub-
sequently discuesed by several suthors. The results are reproduced in the
table, riven here in the form due to Altkin (see his contribution to the
discussion on lielder's,1977, paper), who added the last columm. Aitkin ex-
nlains the various results as follows: "Colun (a) ariges from a computing
zmethod which ignored the non-orthogonality, substracting the unaflju‘sted main

ANCVA RESULT3 FR0M FRANCIS AND AITXIKR .

Sume Oof squares obtained by different prograxs

Source deofe

- (a) (v) () (@) (e)

Hean 1 Yot given 7305.78 12982.73 12982.73 12982.73
Sex 1 43.58 11.17 43.58 23.71 28.71
Religion A 62.36 57.74 S4.49 69.36 Sk 4i9
SxR [ - 4e61 (1) 10.25 10.25 10.25 10.25
Error 1300  2988.95 2988.95 2988.95 2989.00  2988.95

effette SS from the among cell SS. Columne (c) and {(d) are hierarchical ana~
lyses, giving reavectively sex, religion adjusted for sex and interaction
adjusted for sex and religion, and religion, sex adjusted for religion, and
interaction adjusted for religion and sex. Column (b) arises from a nragres-
sion" analysis in which each effect ‘ia adjusted for all others in the nmodel:
thue sex 1s adjusted for relipgion and the interaction, and religion is ad~
Justed for sex and the interaction (and the mean is adjusted for all ef-
fects!)". As to the column (e); "Here the main effects are adjusted for each
other as in coluan (b), but are not adjusted for the 1nt.rueuo§'.

Nobody would suprort method (a), though the existence of such a program
was in a way “fortunate”, by initiating examination of szome aysteries of the

various programe (see Framcis, 1973). According to their attitude towards



the remaining four methods, statisticians can be clustered into three
schools: (1) of the "hierarchical" partition (c¢) and (d4), (i1) of the "full-
regression” approach (b), and (iii) of the "experimental design" solutiom
(o). Some representatives of the sahocls are: Bock (1963), Searle (1971),
Overall and Klett (1972), O'Brien (1976), Attkin (see Nelder, 1977) of
school (1); Afifi and Azen (1972), Francis ({973), Kutner (1974) and Speed
nné Hocking (1976) of school (i1); Rao (1973), Melder (1574, 1976, 1977)
and Giancla (1975) of school {ii1). {4lso see Bock and Brandt, 1980.)

Another important problem that splits statisticians is the choice be-
tween the non-full rank overparameterized model (termed Model A by Hocking
and Speed, 1975) and the full rank cell means model (termed by them Model. B)
Model A represents the present conventional approach to linear models. But
Urquhart, Weeks and Henderson (1973), giving a historical sccount of the
models, trace back Hodel B to the pioneers (particularly to the early works
of Yates, 1933, 1934). They argue that the Model B aporoach "clarifies what
common techniques are really estimating without the necessity of introducih(
estimability or imposing reatrictioné", and in a nore recent paper Urquhart
and Weeke (1978) conclude that "the cell means model glves the researcher
the flexibility of specifying precisely the functions of interest™. Sven
more outspoken critice of the liodel A approach are Bryce, Scott and Carter
(1980), who express their objections as follows: “In thé early 1950's the
use of the new common overparameterized model came into vogue, #With it came
concepts of estimability, testability, generalized inverse, non-unique so-
lutions, etc. hile thess served to broaden the understanding of mathemati~
cal statisticians and supplied them with endless topice for papers in tech-
nical journals, the practicioner of statistical science either threw away
data until balance wae achieved or applied regression or other methods with-
out knowiag the hypotheses being tested or even realizing that different
approaches implied different h;yotheaea".

This brings us to.onc pt the main issuee in computations of the non-
orthogonal analysis of variance, to the "know-vhat-you-are-testing” problem.

Several statisticians have examined what kind of hypotheses are really
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tested when applylng the various analysis of variance procedures implemented
in videly available computer programs (see, e.g., Francis, 1973, Kutner,
1974, Speed and Hocking, 1976, Speed, Hocking and Hackney, 1978, Hocking,
llackney and Speed, 1978, Frane, 1580, Goodnight, 1980, Searle, 1980, and
Bock and Brandt, 1980). Theilr opinions show that we are far from a common
agreement on how the analysis should proceed and how results cah"be inter-
preted, In particular, the gap between the overparameterized modelers and
the cell means modelers has not been bridged, though most seem to agree that
the only logical procedure is first to set out a hypothesis of interest and
then to test it. This view is strongly advocated by Searle(1980), from the
position of the Model A camﬁ, and by Hocking, Speed and Coleman (1980), from
the Model B camp. This contradicts with the, at present,‘prevailing practice
of "producing" estimable functions and testable hypotheses by the programmes
themselves, often without much control and understanding by the user.

It peems that a common agreement would have a chance to be reacﬁod only
1f we could ook at the two models (A and B) as two sides of the same think,
one rather supporting than contradicting the other, Y¥oreover, it might be
helpful to return to the basic principles and have a fresh look at the line-
ar model, without the inherent prejudices of the two camps. Sineg’Poth,JA
and B, models are algebraic in nature, the reconcilation uight be sought in
the geometric approach, This was already tried in the past (see Corsten,
1958). In fact, the use of geometric approach in the theory of linear models.
hag a long and interesting history, as revealed recently by Herr (1280). Un-

fortunately, this approach has not yet become very popular,

Th les 0f Geometric roach S
In this section we would like to draw attention to some featurees of the
geoxetric approach to linear models that cen help in profound understanding -
of the least-squares estimation and hypothemes testing, We do not want to. go
into details, me they have already been oxposed in a number of papers (see,
€.8.4 Monlezun and Speed, 1980.). We will onmly indicate certain principle

ldeas, leaving their explorations to those who becone interested.
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In the classical, algebraic, approach to linear models the attention is
focused on a parameter space, and the parameter vector is estimated (not
necessarily uniquely) by minimizing a quadratic form. The estimate of the
mean {expectation) for the observation vector can then be obtained by trane-
forming an estirate of the parameter vector with the use of the design ma-
trix, In the 5eomafr1c approach, on the contrary, attention is focused on
observation svace, where the mean vector of observations is estimated di-
rectly by orthogonally projecting the vector of observstions onto an appro-
briate subspace. From thig estimate the parameter vector, or its linear
function, cen be esti-izted by an approprinte linear trapstormation, provided
such a transfermation exists, i.e. the parameter vector, or its function, is
identifiable..

To use some notstion, suppose ¥y is an nxl vector of observations, in
the n-dimentional Euclidean snace En. vith a mean vector E(y) =¢ . Taking
8 = ¥ -9 , the model can be written y = @ + e. But the model is not set com-
Pletely until we do two thinks nore: define a p-dinensional subspace of En,
1, in which @ is supposed to lie, and assume some distribution for e. As
for the latter, the usual assumption 1s that it is multivariaste normal with
a covariance matrix 021 (though further generalizations are possible). As to
1, ite choice is usually not a straizhtforward matter. It has to be defined
in such a way to reflect the dasic structure of the experinental data and
the interest of the researcher.

Technically, the definition of f can be acconplished by imposing any of
the two types of relations, A6 = 0 or = X8, with appropriately chosen ma-
trices A or X, In ?he first case, Q is termed the null space of 4, written

0 =VR[A]; in the second, it is called the range cpace of X, written 00 =
R{X]. (Por detgils g;e Seber, 1980.) Depending on'circumstancea, one or the
other way may be more convenient. For exanple, in a gimple l-~way classifica-
tion of data, wiph 2 classes, we have init;ally the mo@el yiJ = ’11 4'311
(1 =1,2,; 3=1,2, ... ,ni). But usually 1t will be natural to assume that

011 = 012 2 L. = on1 =y (say), for 1,2. This can be imnosed on the mod-
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el either by the m, + n, - 2 relations 04 - oini =0 (1 =1,2; 3 =1,2,
R 1) or by the n = n, +n, relations 013 =y (L = 1,23 §J = 1,2,
cee ni). The form of the (n - 2)x n matrix A and that of the n x 2 matrix
X are obvious. Also it 1s evident that the vector A is here (#,,4,)'. Doth
definitions 0ff) are in this case simple, and evidently equivalent.

In a more complex case of a 3 x 4 croased classification (as discusased
by Searle, 1971, Chapter 7) with By 4 observations in the (i,3)-cell, we can
first i1gnare the fact that the classes cross and define the model as for a
i-way clasaification with 12 classes (cells). I? the vector¢ is written

02 (0]100]250]5:0],503150550655005,+05,,03,,043,0%,)"
vhere ‘13 S (0 1310 0“2, cee .a“n j)' thon the (n—lz) x nmateix A 18 of
the forn A = dlag { A;y,Aj50h, 3,A".,A21,A22.A25,A2,‘,13,.AR.A”,.AS“ where
the (nij ~1) x "ij submatrix A“ represents n“-l contrasts within the
(1,3)=cell (4 = 1,2,3; 3 = 1,2,3,4), Using the other method of definingn,

re could uce ag matrix X the matrix

150 +ee O
W= 10 Lp e 0 Iy
0 o

eee Vg
where '11 is the B g X 1 vector of ones (£ = 1,2,3; J = 1,2,3,4). As the

corresponding vector 8 we would then have the 12 x 1 vector p = (& 408920
ces y "3!;).' vhere ryg = 0“1 ol YT ITT oijni (L= 1,2,3; § = 1,243,4)
(¥e have changed here from X to W and from § to u to keep with the usual no-
tation of that approach.) 1i either of the two ways of defining 0 we have
arrived at the 80 called full rank cell means model (Model B). U-unll} the
more convenient definition 0= R|W), instead of 0= K[A), is used in this
case. To get the non-full rank overparameterized model (Kodel &) we would
uee for this exanple the common n x (1+3+4+3x4) metrix X tha:t corresponds
to the vector 8 = ("'"’1"2"'5"1'52"}'%' P12 Piar eeo ,r“)"; Now the sub-
space for & is defined as ' = R{X]. But since the matrix W is equal to the
last 12 columns of X and sinco P=rank X s rank ¥ (= 12), O= 0'., Hence the
two models are oquivalent (assuming the same distribnuon ror the random

pu-t e) and tho overparametsrization of Model A is evident. The only appar-



