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PREFACE

Since the exposition of the Gauss Markov theorem, and especially during the
past fifty years or so, practically all fields in the natural and social sciences have
widely and sometimes blindly used the Ordinary Least Squares (OLS) method.
It gives us the Best Linear Unbiased Estimator (BLUE), which is also
equivalent to the maximum likelihood (ML) estimator for estimation of the
underlying normal regression relationship. It was in the late 1950’s that
Charles Stein brought to the attention of statisticians the fact that there is a
better alternative to OLS under certain conditions. For a decade, his surprising
result went largely unnoticed. In the late 1960’s a series of papers was pub-
lished giving interpretations and variants of what began to be called the Stein-
Rule estimators. All these developments were primarily aimed at suggesting a
family of biased estimators with potentially smaller Mean Squared Error (MSE)
than OLS. Independent development parallel to this came from Hoerl and
Kennard in 1970 who suggested another biased ridge regression estimator with
potentially smaller MSE as an alternative to OLS. Ridge regression is often
thought to be particularly applicable when the applied researchers in any field of
natural or social science face the problem of multicollinearity in their data — a
serious disease. Again, a series of papers appeared on the scene soon after the
seminal work on ridge regression by Hoerl and Kennard was published.

Thus, "improved estimation” of the linear regression model has been a
focus of scholarly writing over the past twenty-five years, and particularly in the
past decade. The number of contributions has been so numerous that almost
anyone who is not an active researcher in this area is finding the pace too fast
to keep up with. Graduate students are also discovering that more and more of
their required readings in standard courses in Statistics, Econometrics, Bio-
medicine, Psychology, Engineering, and so on are covering these topics; as a
rule they have to read them from various journals. Often, the local libraries do
not even subscribe to the journals from otherwise remote disciplines that may
contain the appropriate references. An increasing number of university depart-
ments in various sciences are offering courses involving applications of Stein-
Rule, ridge regression, etc., on regression models with their own data.

This book attempts to bring together the recent developments in the area
of "improved estimation" and inference in linear models in the form of a gradu-
ate level textbook or a supplementary text. We hope that this book will be an
important step in bridging the above mentioned gap in the published literature.

Our intended readers are graduate students in Statistics, Economics,
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Psychology, Bio-medicine, and Engineering, among others. The book can serve
as a text for theoretical and applied courses in Statistics and Econometrics. We
hope that this book will also serve as a handy guide to these somewhat difficult
theoretical advances for the non-experts who are merely interested in an over-
view of the theory with an emphasis on potential applications, or as a useful
starting point for a more serious research adventure. For the experts in the
area it is intended to be a convenient reference book.

The book has thirteen chapters, most of which are based upon the pub-
lished papers in numerous learned journals. Some of these papers were written
by the authors themselves. The chapters highlight the important aspects of the
main contributions, comment on the results obtained, and establish a relation-
ship with earlier results. We include the technical aspects of the material in the
simplest possible way, and discuss applications. This is one of the reasons why
we think that this book is somewhat different from many other advanced
books. We give a unified treatment of theory and tests by using a restricted
least squares model. The shrinkage factors are used to compare various shrink-
age type, ridge and Stein-Rule estimators. There are a number of sections,
explanatory notes, figures, etc. included in this book which are simply unavail-
able in other books. For example, the canonical reduction of the original
regression model using the singular value decomposition is explained, which is
rarely mentioned in the available textbooks.

The discussion of multicollinearity in the usual textbooks is often mislead-
ing and incomplete. The use of eigenvectors and eigenvalues of the correlation
matrix among regressors is more reliable than certain other ad hoc measures of
multicollinearity. This book explains the related material to practitioners in
simple geometrical terms.

The Stein-Rule estimator for the mean of the normal variable and its
relevance to ordinary regression is not clear from the published literature.
Stein’s "unbiased" estimate of the Mean Squared Error of arbitrary biased esti-
mators has considerable practical relevance, which is clarified in this book.

In later chapters the biased estimation techniques based on Stein-Rule or
ridge regression is shown to lead to "improvements" over the usual estimators
in the so-called distributed lag models, the models with autocorrelation and
heteroscedasticity, Zellner’s seemingly unrelated regression (SUR) equations
and simultaneous equations models.

When there are two or more dependent variables, Hotelling’s canonical
correlation analysis represents a natural multivariate extension of the regression
model. This is extensively used in Psychology, Education, etc. However, the
coefficients of the fitted model are known to be highly unstable with respect to
data perturbations. Some of these difficulties can be avoided by using ridge
regression type ideas. This is also true for the so-called discriminant analysis.
Our twelfth chapter shows that ridge regression type modifications can make
such multivariate techniques more meaningful to the practitioner.

Our final chapter deals with non-normal errors where we have included
several new minimax-type results, and a short discussion of a few aspects of
robust regression methods.
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This book makes extensive use of Kadane’s small-sigma asymptotics to
analyze the sampling properties of various newer estimators. We have included
an explanatory note in Chapter 6 to give an elementary discussion of this topic.
We are encouraged by the fact that the main results based on small sigma
asymptotics are identical with the corresponding exact result. We recommend
it as a valuable research tool. We have also made considerable use of Bayesian
methods including Lindley’s hyperparameter model. We offer an integration of
classical and Bayesian methods without being doctrinaire.
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1

Linear Regression Model

1.1 INTRODUCTION

The least squares regression model is used for studying various types of rela-
tions including technical, behavioral, static, and dynamic ones, both at the indi-
vidual (micro) and collective (macro) levels. Adrian Marie Legendre [1805]
was the first to publish results concerning the method of least squares, although
others may have used it before him; e.g. Galileo Galilei [1632] came very close
to proposing a theory of errors related to the least squares method. Gauss
[1806] postulates that when any number of equally good data regarding an unk-
nown quantity are available, their arithmetic mean is the "most probable" value.
From this, Gauss derives his normal law of error or what we call the Gaussian
or the normal distribution. Later Gauss [1823] and Markoff [1900] developed
the theory of least squares for estimation of parameters in a general linear
regression model which has proved to be useful in a great many fields of appli-
cation.

In this chapter we study the general linear regression between a dependent
variable and a set of explanatory variables (regressors). Various canonical
forms of this relationship are given. Further, several concepts related to canon-
ical reductions are explained both algebraically and geometrically by using a
simple example of two regressors. Since this topic is covered extensively in
various textbooks, we have concentrated on items that may not be generally
available.



2 LINEAR REGRESSION MODEL

1.2 SPECIFICATION OF THE MODEL

Consider a linear regression model as
Ve =B1xy T Bpxy t o Bxy Ty 1)

where 8y, ..., B, are unknown regression coefficients; y, are observations on
the dependent variable; x;, are observations on the p regressors; u, are true
unknown errors (shocks or disturbances); t =1, ..., T is the index for number-
ing observations, and i = 1, ..., p is the index for numbering the variables and
their coefficients. We may rewrite (1) in matrix notation as

y=XB+u (2)

where y is a T X 1 vector of observable random variables; X is a T X p matrix
of known constants (non-stochastic regressors); 8 is a p X1 vector of
unknown regression coefficients; u is a T X 1 vector of disturbances.

We often use the following conventional assumptions:
Assumption 1 Non-stochastic X

X is a non-stochastic matrix of regressors.
Assumption 2 Full rank of X’X
The rank of X is p.
Assumption 3 Asymptotically full rank of X’X/T
X'X _ 0
where Q is a finite and non-singular matrix of rank p. This assumption is

required primarily for consistency and other asymptotic results in Econometrics
mentioned in later chapters.

Assumption 4 Normality of the disturbances

u ~ N(0,d2I).
The T X 1 vector u of errors has a multivariate normal distribution.

This assumption is required primarily for various tests of significance. It also
implies that the disturbances are homoscedastic, i.e. V(x,) = o2 for all
t =1, ..., T, and that they are serially independent, i.e. cov (y,, u,-) = 0 for all
t#t'=1,..,T.

Most of the estimators discussed in the book have been given non-Bayesian
interpretations and do not need the normality assumption for studying their
properties. Chapter 13 deals with the implications of non-normality. This
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assumption of normality is generally essential for maximum likelihood estima-
tion. Explanatory Note 1.1 at the end of this chapter clarifies the concept of
maximum likelihood estimation for readers who might not be familiar with it.

Under an appropriate subset of these assumptions the conditional expecta-
tion of y given the regressors X, and the conditional variance covariance matrix
of y are:

E@IX)=Xx8;V@IX)=El —EQIOIYy —EQIX)] =061 (3)

Thus we have p + 1 "true unknown" parameters § and o2 in our model (2).

A condition that will be used occasionally is that one of the regressors is a
constant term; that is, x;, = 1 for all 7 and for some 1 <i < p. Alternatively,
we could add an intercept in (2) and write y = 8o+ X8 + u. This has been
taken up in a later section.

The ordinary least squares (OLS) estimator of 8y, ..., B8, which minimizes

T
S=2(yt—ﬂ]xlt— _Bpxpt)z’ 4)
t=1

or in matrix notation: S = (y —XB8)'(y — XB), is obtained by taking the
derivative of S with respect to 8 and equating it to zero. This gives for 8 = b,

X'Xb =Xy (5)

a set of equations known as the least squares normal equations. Now, if X is
of rank p, (X’X)~! exists and we have

b= (XX)"'XYy (6)

which is called the OLS estimator. This value of 8 corresponds to a minimum
of S because the second-order partial derivative of S with respect to 3 is a posi-
tive definite matrix 2X’X.

Once (8 has been estimated by b, we can write

u=y—Xb (7
as the estimator for the error (residual) vector u. Further, the sum of squares
of estimated residuals divided by T — p, viz.,

s u'u

§t=— 8

T—p (8)

can be shown to be a consistent and unbiased estimator of ¢2. We note that

the sum of the estimated residuals (unless one of the regressors is a constant)

is not zero. However, X’u = 0. Thus, on the basis of the estimated regression
y =Xb +u,

yy =b'X'Xb + u'u 09)

where y’y is the total sum of squares (SST), b’X’Xb is the sum of squares due

to regression (SSR), and u’u is the sum of squares due to errors (SSE). The
multiple correlation coefficient (a measure of goodness-of-fit) is then defined as



