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Preface

The work of Jerzy Neyman and Egon Pearson (“On the Problem of
the Most Efficient Tests of Statistical Hypotheses,” Philosophical Transac-
tions of the Royal Society of London, series A, 231:289-337, 1933) gave an
economic cast to the foundations of statistical method. They presented
criteria of performance and sought to optimize them. Abraham Wald
(Statistical Decision Functions, New York: Wiley, 1950) gave a more
explicitly economic account. Even earlier, statistical methodology in accep-
tance inspection and quality control had been based on explicitly economic
concepts (producers’ and consumers’ risks). Statistical, method was an
example for the acquisition of information. In a world of uncertainty it was
no great leap to realize that information is valuable in an economic sense.
Nevertheless, it has proved difficult to frame a general theory of information
as an economic commodity, because different kinds of information have no
common unit that has yet been identified. In different ways the papers in
this volume have sought to set out the dimensions of the problem or
problems and have proposed approaches in certain specific cases. But a
general approach is still elusive,

I should like to thank Mary Ellen Geer for her careful and thorough
editing and Michael Barclay and Robert Wood for preparation of the index.
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1 Bayes and Minimax Solutions
“of Sequential Decision Problems

Abraham Wald developed the idea and methods of testing statisti-
cal hypotheses by sequential analysis at the Statistical Research
Group, formed to develop statistical methods for use in the national
defense in World War II. No doubt, as in other such efforts, many of
the fruits were not available for use-until after the emergency that
called them forth was over. The memorandum (Statistical Research
Group, 1945), originally marked “Confidential,” was circulated,
and some of us at the Weather Division of Air Force headquarters
were using it within a few months to test whether or not the
long-range weather forecasts produced there were significantly bet-

This chapter was written with D. Blackwell and M. A. Girshick. Reprinted from Econo-
metrica, 17 (1949): 213-244. The research for this paper was carried on at the RAND
Corporation, a nonprofit research organization under contract with the United States Air
Force. It was presented at a joint meeting of the Econometric Society and the Institute of
Mathematical Statistics at Madison, Wisconsin, September 9, 1948, under the title *‘Statistics
and the Theory of Games.” Many of the results in this paper overiag with those obtained
previously by Wald and Wolfowitz (1948), and also with some prior unpublished resuits of
Wald and Wolfowitz, announced by Wald at the meeting of the Institute of Mathematical
Statistics at Berkeley, California, June 22, 1948. Sections 3 and 6 of the present’paper contain
analogues of lemmas 1 -4 of Wald and Wolfowitz (1948), though both the statements and the
proofs differ because of the generally different approach. The proof that the sequential
probability ratio test of a dichotomy minimizes the expected number of observations under _
either hypothesis, in Section 5 of the present paper, follows from Section 3 in the same way that
the proof of the same theorem follows from lemmas 1-8 in Wald and Wolfowitz. The
previously mentioned unpublished results of Wald and Wolfowitz include the main result of
Section 2 (structure of the optimum sequential procedure for the finite multidecision problem)
in the special case of linear cost functions.




2 The Economics of Information

ter than chance. (They were not.) I became especially interested in
Wald’s more general formulations of statistical decision theory,
both nonsequential and sequential (Wald, 1947b).’

While at the RAND Corporation in the summer of 1948, I
worked especially with Meyer A. Girshick. About that time, Gir-
shick had attended a meeting of the Institute of Mathematical
Statistics at which Wald and Jacob Wolfowitz presented some new
results about the structure of sequential analysis when there were

“more thgn two alternative hypotheses. He returned with great
excitement and stimulated David Blackwell and myself to join him
in attempting to reconstruct the results in a more transparent form;
m original presentation was certainly hard to understand, and its
Wymg logic unclear. The three of us grasped that the essential

- §d€a was the repetition of the decision situation at each step, though
with varying values of the parameters. Hence the decisi®n rufe
consisted in specifying regions in the parameter space, the same for
all time. This point of view was of course implicit in the studies of
Wald (1947a) and of Wald and Wolfowitz (1948) but had not been
made central.

An unpleasant episode was connected with this paper: a version
was circulated that had inadequate acknowledgment to the work of
Wald and Woifowitz, and they felt that there was a challenge to
their priority. The published version presents the relation between
the papers fairiy.

The paper <eis forth explicitly the notion of recursive optimiza-
tion. It provided me with a model argument to be applied to the
determinaticn of optimal inventories in work done jointly with
Theodore E. Harris and Jacob Marschak. More important, it
helped to suggest to Richard Bellman (1957) the general principle of
dynamic programming, which has found so many applications.

The problem of statistical decisions has been formulated by Wald
(1947b) as follows. The statistician is required to choose some action a from
a class 4 of possible «ciions. He incurs a loss L{x, a), a known bounded
function of his action 2 and an unknown state u of Nature. What is the best
action for the statistician to take? _

If uis a chance variable, not necessarily numerical, with a known a priori
distribution, then 6 L(1.a) = R(a)is the expected loss from action a, and any
action, or randomized mixture of actions, which minimizes R(a) has been
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called by Wald a Bayes solution of the decision problem, corresponding to
the given a priori distribution of u.

Now suppose there is a sequence x of chance variables x,, x,, . . .,
whose joint distribution is determined by . Instead of choosing an action
immediately, the statistician may decide to select a sample of x’s since this
will yield partial information about u, enabling him to make a wiser
selection of a. There will be a cost cy(x) of obtaining the sample x,, . . .,
Xy and, in choosing a sampling procedure, the statistician must balance the
expected cost against the expected amount of information to be obtained.

Formally, the possibility of making observations leaves the situation
unchanged, except that the class 4 of possible actions for the statistician has
been extended. His action now consists of choosing a sampling procedure T
and a decision function D specifying what action a will be taken for each
possible result of the experiment. The expected loss is now R(7,D) =
I(T,D) + ¢(T), where I(T,D) is the expected value of L(u,a) for the specified
sampling procedure and decision rule, and ¢(T) is the expected cost of the
sampling procedure. A Bayes solution is now a pair (7,D), or randomized
mixture of pairs (7,D), for which R(T,D) assumes its minimum value.

The minimizing T = T* has been implicitly characterized by Wald and
may be described by the following rule: At each stage, take another observa-
tion if and only if there is some sequential continuation which reduces the
expected risk below its present level. The main difficulty here is that various
quantities which arise are not obviously measurable: for instance, if the first
observation is x,, we must compare our present risk ‘evel, say w,(x,), with
z(x,) = inf w(x, ,T,D), where w(x,,T,D) is the expected risk for any possible
continuation (7T,D); we take another observation if and only if w, > z. It is
not a priori clear that z will be a measurable function o x,, so that the set of
points x, for which we stop may not be measurable Actually, z always is
measurable, as will be shown.!

A characterization of the minimizing 7= T* is obtained for hypotheses
involving a finite number of alternatives under the condition of randem
sampling. It consists of the following. We are given k hypotheses H,(i = 1,2,
. . . , k) which have an a priori probability g, of occurring, a risk matrix
W = (w,) where w, represents the loss incurred in choosing H, when H, is
true, and a function ¢(n) which represents the cost of taking 7 observations.
It is shown that for each sample size N, there exist kK convex regions S} in the

1. The possibility of nonmeasurability is not considered 1n Wald (1947a) or Wald and
Wolfowitz (1948).
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(k — 1)-dimensional simpiex spanned by the unit vectors in Euclidean
k-space whose boundaries depend on the hypotheses H;, the risk matrix W,
and the cost function ,(n) = c(N + n)— c(n). These regions have the
property that if the vector g( V) whose components represent the a posteriori
probability distribution of the k hypotheses lies in ST, the best procedure is
to accept H; without further experimentation. However, if g(V) lies in the
complement of UL ,S*, the best procedure is to continue taking observa-
tions. At any stage, the decision whether to continue or terminate sampling
is uniquely determined by this sequence of k regions, and moreover, this
sequence of regions completely characterizes T*.

A method for determining the boundaries of these convex regions is given
for k = 2 (dichotomyv) when the cost function is linear. It is shown that in
this special case, 7* coincides with Wald’s sequential probability ratio test.

The minimax solution to multivalued decision problems is considered,
and methods are given for obtaining them for dichotomies. It is shown that
in general, the minimax strategy for the statistician is pure, except when the
hypotheses involve discrete variates. In the latter case, mixed strategies will
be the rule rather than the exception. Examples of double dichotomies,

" binomial dichotomies, and trichotomies are given to illustrate the construc-
tion of 7* and the notion of minimax solutions.

It may be remarked that the problem of optimum sequential choice
among several actions is closely allied to the economic problem of the
rational behavior of an entrepreneur under conditions of uncertainty. At
each point in time, the entrepreneur has the choice between entering into
some imperfectly liquid commitment and holding part or all of his funds in
cash pending the acquisition of additional information, the latter being
vostly because of the foregone profits.

1. Construction of Bayes Solutions

The Decision Function

We have seen that the statistician must choose a pair (T, D). It turns out that
the choice of D is independent of that of 7.

-EMMA. There is a fixed sequence of decisionfimctions D,, such that
1-1) R(T,D,) — inf R(T,D) = w(T) forall T.
This will be the main result of this section. It follows that the expected loss
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from a procedure T may be taken as w(T'), since this loss may be approxi-
mated to arbitrary accuracy by appropriate choice of D,, and a best
sequential procedure 7* of a given class will be one for which w(T™) =
inf w(T), where the infimum is taken over all procedures T of the class
under consideration.

We are considering, then, a chance variable 2 and a sequence x of chance
variables x;, X, . . . . A sequential procedur? 1 15 a sequence of disjunct
sets Sp, 8, . . . , S - . . ,whereSydependsonlyonx,, . . . ,xyandis
the event that the sampling procedure terminates with the sample x;, . . . ,
Xy; we require that £5.,P(Sy) = 1. S, is the event that we do not sample at
all, but take some action immediately; it wil! have probability either O or 1.

A decision function D is a sequence of functions dp, dy{x,), . . .,
di(xy, . . ., Xp), - - . , Where each dy assumes values in 4 and specifies
the action taken when sampling terminates with x,, . . . , Xy. We admit
only decision functions D such that L{u,d,(x)] is for each N a measurable
function.

Proof of Lemma. The loss from (T,D) is G(u,x,7,D) = L{u,dy(x)] + cy(x)
for x € Sy, and 6G = R(T,D). Here, cy(x) depends onlyon x;, . . . , Xy.
Then, denoting by 6 the conditional expectation given x;, . . . , Ay, We
have 6 yG = 6 Llu,dy(x)] + cy(x) for x € S, 2and

(1-2) R(T,D)= ;:0 fs Exlludy) dP + o(T).

Now fix N; we shall show that we can choose a sequence of functions
dyd{x),m=1,2, . .. ,such that

(@) 6xl(udy,,) 2 Enl(u,dymyy) forall x,
(b) 6L (u,dy) = ry for all dyand all x, where
rv(x) = lim &yI(u,dy,,).

() ry=éyr, if n=N.

First choose a sequence dj,, such that
S L(udy,) — ig'f 6L(udy)=r.

Now define dy,, inductively as follows: dy; = dy,; dyw = diym for those
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values of x such that & yL(u,d},,) S 6 xIu,dy, 1 ), Otherwise Ay, = dy, 1 -
Then certainly (a) holds, so that lim &yL(u,dy,) = ra{x) exists. Also

& nL(udy,,) = EnL(u,dy,,), s0 that &ry = r. Choose any dy and any 6 > 0,
and let S be the event {6 yL(u,dy) < ry(x) — ). Then, defining d¥,, = dyon
S, d%.,. = dn,, elsewhere, we have

EL(u,d},) = f rw(x) dP + f 6 nL(u,dyy,) dP — OP(S),
Y cs :

so that lim 6L(u,d%,) =r—J P(S), and P(S)=0. This establishes (b).

m—sw

Finally, (c) follows from the fact that every dy(x) is also a possible d,(x) if
n> N. This means that, defining d} =dy, we have 6yL(udy)=
6316 ,L{u,dy)] Z € yr, for all dy, and consequently (c) holds.

Now define D,, = (dy ). Since & yL(u,dy,,) decreases with m, (1-2) yields
that

R(T.D,)— hﬁo fs r(x) dP + o(T) = w(T),

and, using (b), that R(7,D) 2 w(T') for all D. Thus we have reduced the
problem of finding Bayes solutions to the following. We are given a se-

quence x of chance variables x,, x,, . . . , and a sequence of nonnega-
tive expected loss functions w,, . . . , where wy=ry(x;, . . ., Xy) +
cn(x, . . ., xy). cyis the cost of the first N observations, and ry, is the loss

due to incomplete information. With each sequential procedure T = {Sy)
there is associated a risk w(T') = 2y f s wa(x) dP. How can T be chosen so
that w(T) is as small as possible?

The Best Truncated Procedure

Among all sequential procedures not requiring more than N observations,
there turns out to be a best, that is, one whose expected risk does not exceed
that of any other. Moreover, the procedure can be explicitly described, by
induction backwards, in such a way that its measurability is clear. After
N — 1 observations x,, . . . , xy.,, we compare the preeent risk wy., with
the conditional expected risk 6., wy if we take the final observation, Thus,
by choosing the better course, we can limit our loss to ay_, =
min (wy_,,6y.,wy), which may be considered as the attainable risk with
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the observations x,, . . . , Xy~,. We can then decide, on the basis of N ~ 2

observations, whether the (N — 1)st is worth taking by comparing the

present risk, wy..,, with 6y_,Qx._.,, the attainable risk if xy._, is observed.

Continuing backwards, we obtain at each stage an expected attainable risk

o, for the observations x,, . . . , X, and a description of how to attain this
,. tisk, that is, of when to take another observation. This is formalized in the
" following theorem.

THEOREM 1. Let x;, . . . , Xy, Wy, - . . , Wy be any chance variables, w, =
wi(X,, . .., X;). Define ay=wy, a;=min(w,,6,a,,,) for j<N, S,=
(w;>a, for i <j, w;=a). Then for any disjoint events By, . . . , By, B,
depending only on x;, . . . , x;, ZIL,P(B,) = 1, we have

5[ mars, [ wer

Proof. We shall show that, for fixed / and any (x;, . . . , X;)-set 4,

(1-3) ZI a,dPngf o, dP,

and that, for fixed j, and any disjoint sets 4,, , A with 4, depending
onlyonx,, ...,xand Uf.’.,ﬂA,dcpendingonly onxg, ...,x,

1-4 dPs
( ) i>J L: aj z Ll al

Choosing 4 = B, in (1-3) and summing over J, choasing 4, = B,S;in (1-4)
and summing over j, and adding the results yields

N N
1- dP=

Now on S;, a, = w;, and always o; S w,. Making these replacementsin (1-5)
yields the theorem.
We now prove (1-3)and (1-4). The relatldnshxp (1-3)is clear for i = N; for

i<N,
E{ a,dP"f a;dP""f ath.
45 AS; AlSis5U. . SN

Buton S,,, U. . .88y, a, = §,a,,,; making this replacement in the final
integral and using induction backwards on i completes the proof. The
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relationship (1-4) is clear for j = N; for j < N,

2[ ade=f a,dPéf a;yy dP
i>j JA; AjgU. . UAy AjU. . UAy

A_”-i AI

i>j+1

where the inequality is obtained from the fact that always a; = 6,a;,,. An
induction backwards on j now completes the proof of (1-4).

The Best Sequential Procedure

We are given now a sequence of functions wy, wy, . . . , Wy, . . . ,where
wy=ry(X;, . . ., Xy)+cn(x1, - . ., Xy). The sequence ry(x) is uni-
formly bounded, since we supposed the original loss function L(u,a) to be
bounded, and we have shown that ry, = &yr, for n > N. We shall suppose
that cy(x) is a nondecreasing sequence, cy(x) — ® as N — « for all x. We
now construct a best sequential procedure.?

The best sequential procedure is obtained as a limit of the best truncated
procedures given in the preceding section.

We first define oy = wy, Q= min (w;,6q;4,x), Sy = {w;> oy for
i <j, w;= ayy). For fixed j, a,y is a decreasing sequence of functions; say
Q> i3 N — », Then a;= min (w 6’,a,+,) Define S; = (w; > ¢ for
i<jw=a j} We shall prove that T* = {S }is a best sequentlal procedure
that is, T* is a sequential procedure, and for any sequential procedure
T = (B j}s

wT =" | wdPsY | wdP=wT)
/=0 Js, i=0 JB,

Now

g f w,szf cNdng deP--M%P(B,-),
i=N+1 JB, U B U B i>
i>N

i>N

2. The assumption made here is somewhat weaker than condition 6 in Wald (1947a, p. 297).
The only other assumption made, that L(u,q) is bounded is condition | in Wald (1947a, p.
297).
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where M is the uniform upper bound of r,(x), r,(x), . . . Thus

N-1
> | w dP+f deP+f wy dP
B, By U B

1=0
>N

< w(T) + MP(Bys, U. . ),
so that w(Ty) = w(T) + MP(By;, U . . .), where Ty is the truncated test

By,...,By_,, ByUBN4 U. . . . From the preceding section,
) f d (Tw)
w,dP=w
for all N. Then
w, dP = w(T),
3 [ wapmwer)

letting N — =, and using Lebesgue’s convergence theorem and the easily
verified fact that the characteristic function of S, approaches that of S;, and
therefore w(T*) = w(T). N

It remains to prove that T* really is a sequential test, that is,

f; P(Sy) = 1.
N=(Q

Write Ay =C(Sy + . . . + Sy), Iy=14y = 4; we show that P(4)=0. It is
easily verified by induction that ay = ¢; for all N. The relation (1-3), with
i = 0, A = sample space, yields that

N
ao)v; 2 f Cm dP= f Cm dP
Jumir1 IS OSavt  +Sw)

for all m < N. Then

a,,::f c,,,dPéfc,,,dP
A A

for all m. Since ¢, — «©, P(4) =0.
We now prove that w(7*) = a,. If T% denotes the truncated test Sy, S),
ve., Sy+Sys+..., the proof that w(Ty)— w(T') shows that
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w(T%) = w(T*). Also (1-3), with i = 0, 4 = sample space, shows that

N
Aoy = 2 w, dP.
J=0 JS;n
Since (Syy, - . - , Sy} isthe best of all procedures truncated at N, and T* is

the best of all sequential procedures, w(7T*) = agy = w(T'Y). Letting N —
yields w(T*) = a,.

Now S, = {w, = a,); that is, the best procedure 7™ is to take no observa-
tions if and only if there is no sequential procedure which reduces the risk
below its present level. This remark, which identifies our procedure with
that characterized by Wald, at least at the initial stage, will be useful in the
next section.

2. Bayes Solutions for Finite Multivalued Decision Problems

In this section we shall seek a characterization of the optimum sequential
procedure developed in Section 1 in cases where the number of alternative
hypotheses is finite. It will be shown that the optimum sequential test for a
k-valued decision problem is completely defined by & (or a sequence of k)
convex regions in a (k — 1)-dimensional simplex spanned by the unit
vectors, No procedure has yet been developed for determining the bounda-
ries of these regions in the general case. However, for k = 2 (dichotomy) and
for a linear cost function, a method for determining the two boundaries has
been found and the optimum test is shown to be the sequential probability
ratic test developed by Wald (1947b).

Statement of the Problem

We are given k hypotheses H,, H,, . . . , H,, where each H, is character-
ized by a probability measure 4, defined over an R-dimensional sample
space E  and has an a priori probability g, of occurring. We are also given a
risk matrix W= (w;), (i,j=1,2, . . . , k), where wy is a nonnegative real
number and represents the loss incurred in accepting the hypothesis H,
when in fact H, is true. (We shall assume that w,, = O for all /. This is based
on the supposition, which appears reasonable, that the decision maker is not
to be penalized for selecting the correct alternativd, no matter how unpleas-
ant its consequences may be.) In addition to the risk matrix (w,) we shall
assume that the cost of experimentation depends only on the number (n) of
observations taken and is given by a function c(n) which approaches infinity
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as n approaches infinity. The problem is to characterize the procedure for
deciding on one of the k alternative hypotheses which results in a minimum
average risk. This risk is defined as the average cost of taking observations
plus the average loss resulting from erroneous decisions.

Structure of the Optimum Sequential Procedure

Let G, stand for the convex set in the k-dimensional space defined by the
vectors g = (8,82, . . - , &) With components g; = 0 and ZX.,¢,= 1; and
let H=(H,,H,, . . ., H;) represent the k hypotheses under considera-
tion. Then every vector g in G, may be considered as a possible a priori
probability distribution of H.

For any g in G; and for any sequential procedure 7 (see the definition in
Section 1), let R(g|T") represent the average risk entailed in using the test 77
when the a priori distribution of H is g. Then

r -~ k k k
(1-6) R@T)= 21 &6 [c(MIT) + 1_21 ;l gwyPy(T),

where & [c(n)| T’} is the average cost of observations when the sequential test
T'is used and H is true, and P{(T) is the probability that the sequential test
T will result in the acceptance of H, when H, is true. The risk involved in
accepting the hypothesis H; prior to taking any observations will be desig-
nated by R{j=1,2,. . . , k) and is given by

k
(1-7) R;= '21 &Wy.

We now define k subsets ST, S%, . . . , St of G, as follows. A vector g of
G, will be said to belong to S} if (a) min (R,,R,, . . . , R,) =R, and (b)
R(g|T) = R, for all T. We observe that since the unit vector with 1 in the jth
component belongs to S7, the subsets ST are nonempty. We now prove the
following theorem.

THEOREM 2. The sets S} are convex. That is, ifg, and g, belong to S} so does
g=ag, +(I—ajg,foralla 0sa=1

Proof. Assume the contrary. Then there exists a sequential procedure T
such that

k k k k
(1-8) R(@gIT)= 21 86 [c(mIT] + 1-21 ;g giwyPy < i‘_EtgiWu-



12 The Economucs of Information

But by definition, if either g, or g, represents the a priori distribution of the
hypotheses H, we must have for all sequential procedures and hence for 7,

(1-9) R@T)= 2 86, [cmiT] + 2 2 guWyPy 2 &1:Wy,

and

(1-10) RgIT)= 2 826 ,[c(n)|T] + ’z Z WP, z W
-] =1
If we now multiply (1-9) by a and (1-10) by (1 — @) and add, we see that
the rcsu%ing expression contradicts (1-8). This proves the theorem.?

Itis easily seen that for given hypotheses H the shape of the convex regions
S} will depend on the cost function c(n) and the risk matrix W. Thus if the
cost of taking a single observation were prohibitive, the region S} in G,
would simply consist of all vectors g for which min (R,,R,, . . .,
Ry)=R,. On the other hand, if the cost of taking observations were
negligible and the risk of making an erroneous decision large, the regions S
would shrink to the vertices of the polyhedron G,. To exhibit the depen-
dence of the regions S} on H, c(n), and W, we shall use the symbol
ST[H,c(n),W]. We shall also use the symbol S*[H,c(n), W] to represent the
region consisting of all vectors g in G, which belong to the complement of
UL ST H, c(n),W].

We now define cy(n) =c(N+n)—c(N)foral N=0,1,2, . . . . Thus
cy(n) represents the cost of taking n observations when N observations have
already been taken. It will now be shown that, for random sampling, the
problem of characterizing the optimum sequential procedure 7* for a given
H, c(n), and W reduces itself to the problem of finding the boundaries of the
regions S} [H,cy(n), W] for all N. The truth of this can be seen from the
following considerations.

We are initially given a vector g in G, as the a priori distribution of the
hypotheses H. Initially we are also given a matrix W and a function
c(n) = c(n). Now assume we have taken N independent observations (N =
0.,1,2, . . . ,). These N observations transform the initial state into one in
which (a) the vector g goes into a vector g™ in G, where each component
&M of g™ represents the new a priori probability of the hypothesis H, (that

3. A similar proof shows the convexity of the corresponding regions in cases where the
number of alternatives is infinite.
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is, the a posteriori probability of H; given the values of the N observations),
(b) the risk matrix ¥ remains unchanged, and (c) the cost function c(n) goes
into the function cy(n).

Assume now that the boundaries of the regions S}[H,cy(n),W] are
known for each j and N. Then, if we take the observations in sequence, we
can determine at each stage MV =0,1,2, . . . ,) in which of the k+ 1
regions the vector g™ lies. If g™ lies in S*[H,cy(n), W}, then, by definition
of this region, there exists a sequential test 7 which, if performed from this
stage on, would result in a smaller average risk than the risk of stopping at
this stage and accepting the hypothesis corresponding to the smallest of the
quantities R = Z.g®Mwy(j=12,. .., k). But it has been shown in
Section 1 that if any sequential test 7" is worth performing, the optimum
test 7T* is also worth performing. Now 7" will coincide with T* for at least
one additional observation. But when that observation is taken g™ will be-
come g™ and cy(n) will become cyy (7). Again if g®W+D lLies in
S*[H,cy+(n), W], the same argument will show that it is worth taking
another observation. However, if g™V lies in S}[H, ¢y ,(n), W} for some j,
it implies that there exists no sequential test 7 which is worth performing,
and hence the optimum procedure is to stop sampling and accept H .

Thus we see that the optimum sequential test T* is identical with the
Jollowing procedure. Let N=0, 1, 2, . . ., represent the number of obser-
vations taken in sequence. For each value of N we compute the vector g™
representing the a posteriori probabilities of the hypotheses H. As long as
gM lies in S*[H,cy(n), W] we take another observation. We stop sampling
and accept H{(j=12, ..., k) as soon as g™ falls in the region
SHH,cy(n),W].

We have as yet no general method for determining the boundaries of
S*[H,cy(n),W] for arbitrary H, cy(n), and W. However, in the case of a
dichotomy (k = 2) and a linear cost function, such a method has been found
and will be discussed here in detail. Some illustrative examples of the
optimum sequential test for trichotomies (k = 3) will also be given.

3. Optimum Sequential Procedure for a Dichotomy
when the Cost Function is Linear

We are given two alternative hypotheses H, and H,, which, for the sake of
simplicity, we assume are characterized respectively by two probability
densities f;(x) and f;(x) of a random vector X in an R-dimensional Euclidean
space. (If X is discrete, f,(x) and f;(x) will represent the probability under the



