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Preface

Today’s global energy market places many demands on power generation tech-
nology including high thermal efficiency, low cost, rapid installation, reliability,
environmental compliance, and operation flexibility.

The demand for clean, non-fossil-based electricity is growing; therefore, the
world needs to develop new nuclear reactors with higher thermal efficiency in order
to increase electricity generation and decrease the detrimental effects on the envi-
ronment. The current fleet of nuclear power plants is classified as Generation III or
less. However, these models are not as energy efficient as they should be because
the operating temperatures are relatively low. Currently, groups of countries have
initiated an international collaboration to develop the next generation of nuclear
reactors called Generation IV. The ultimate goal of developing such reactors is to
increase the thermal efficiency from what currently is in the range of 30-35 % to
45-50 %. This increase in thermal efficiency would result in a higher production of
electricity compared to current pressurized water reactor (PWR) or boiling water
reactor (BWR) technologies.

A number of technologies are being investigated for the next generation nuclear
plant that will produce heated fluids at significantly higher temperatures than current
generation power plants. The htgher temperatures offer the opportunity to signifi-
cantly improve the thermodynamic efficiency of the energy conversion cycle. One
of the concepts currently under study is the molten salt reactor. The coolant from the
molten salt reactor may be available at temperatures as high as 800-1000 °C. At these
temperatures, an open Brayton cycle combined with Rankine bottoming cycle
appears to have some strong advantages.

Combined-cycle thermal efficiency increases as gas turbine-specific power
increases. The gas turbine firing temperature is the primary determinant of specific
power.

Gas turbine engines, both in aircraft and industrial power generation, represent
one of the most aggressive applications for structural materials. With ever growing
demands for increasing performance and efficiency, all classes of materials are
being pushed to higher temperature capabilities. These materials must also satisfy
stringent durability and reliability criteria. As materials are developed to meet these
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demanding requirements, the processing of these materials often becomes very
complicated and expensive. As a result, the cost of materials and processes has
become a much larger consideration in the design and application of high-perfor-
mance materials. Both the aircraft engine and power generation industries are
highly cost competitive, and market advantage today relies on reducing cost as well
as increasing performance and efficiency.

Development of high-temperature/high-strength materials, corrosion-resistant
coatings, and improved cooling technology has led to increases in gas turbine firing
temperatures, This increase in firing temperature is the primary development that
has led to increases in combined-cycle gas turbine (CCGT) thermal efficiencies.
The improvements in combined-cycle thermal efficiencies and the commercial
development of combined-cycle power plants have proceeded in parallel with
advances in gas turbine technologies.

The Generation IV International Forum (GIF) Program has narrowed design
options of the nuclear reactors to six concepts. These concepts are gas-cooled fast
reactor (GFR), very high temperature reactor (VHTR), sodium-cooled fast reactor
(SFR), lead-cooled fast reactor (LFR), molten salt reactor (MSR), and super critical
water-cooled reactor (SCWR). These nuclear reactor concepts differ in their design
in aspects such as the neutron spectrum, coolant, moderator, and operating tem-
perature and pressure.

There are many different types of power reactors. What is common to them all is
that they produce thermal energy that can be used for its own sake or converted into
mechanical energy and ultimately, in the vast majority of cases, into electrical
energy. Thermal-hydraulic issues related to both operating and advanced reactors
are presented. Further, thermal-hydraulics research and development is continuing
in both experimental and computational areas for operating reactors, reactors under
construction or ready for near-term deployment, and advanced Generation-IV
reactors. As the computing power increases, the fine-scale multi-physics compu-
tational models, coupled with the systems analysis code, are expected to provide
answers to many challenging problems in both operating and advanced reactor
designs. .

Compact heat exchangers, filters, turbines, and other components in integrated
next generation nuclear power plant combined-cycle system must withstand
demanding conditions of high temperatures and pressure differentials. Under the
highly sulfiding conditions of the high temperature, such as inlet hot steam or other
related environmental effects, the performance of components degrades signifi-
cantly with time unless expensive high alloy materials are used. Deposition of a
suitable coating on a low-cost alloy may improve its resistance to such sulfidation
attack and decrease capital and operating costs. A review of the literature indicates
that the corrosion reaction is the competition between oxidation and sulfidation
reactions. The Fe- and Ni-based high-temperature alloys are susceptible to sulfi-
dation attack unless they are fortified with high levels of Cr, Al, and Si. To impart
corrosion resistance, these elements need not be in the bulk of the alloy and need
only be present at the surface layers.
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Those that practice the art of Nuclear Engineering must have a physical and
intuitive understanding of the mechanisms and balances of forces, which control the
transport of heat and mass in all physical systems. This understanding starts at the
molecular level, with intermolecular forces and the motion of molecules, and
continues to the macroscopic level where gradients of velocity, temperature, and
concentration drive the diffusion of momentum, heat, and mass, and the forces of
pressure, inertia, and buoyancy balance to drive convection of fluids.

This text covers the fundamentals of thermodynamics required to understand
electrical power generation systems. It then covers the application of these prin-
ciples to nuclear reactor power systems. It is not a general thermodynamics text, but
is a thermodynamics text aimed at explaining the fundamentals and applying them
to the challenges facing actual nuclear power systems. It is written at an under-
graduate level, but should also be useful to practicing engineers.

Chapters 3 and 4 were provided to me by Prof. Bill Garland of Department of
Engineering Physics at McMaster University Ontario, Canada, and his permission
was given to this author exclusively to use his lecture, class notes, and other related
materials that he wrote during the time he was teaching at this university.

This book also concentrates on fundamentals of fluid dynamics and heat transfer;
thermal and hydraulic analysis of nuclear reactors; two-phase flow and boiling;
compressible flow; stress analysis; energy conversion methods.

It starts with the fundamental definitions of units and dimensions, then ther-
modynamic variables such as temperature, pressure, and specific volume. Then,
approaches to start of thermal hydraulic analysis with the topics in that field from
Chap. 2 through Appendix 16, where it finishes off with design of heat exchanger
and shell and tube using different Verifications and Validations (V&V) in com-
putational mechanics and their applications of the fundamentals to Brayton and
Rankine cycles for power generation. Brayton cycle compressors, turbines, and
recuperators are covered in general, along with the fundamentals of heat exchanger
design. Rankine steam generators, turbines, condensers, and pumps are discussed.
Reheaters and feed water heaters are also covered. Ultimate heat rejection by cir-
culating water systems is also discussed. Appendix 17 covers the analysis of reactor
accidents, which is independent of other chapters and can be assigned as a stand-
alone reading chapter for students or can be independently taught.

The third part of this book covers current and projected reactor systems and how
the thermodynamic principles are applied to their design, operation, and safety
analyses. ‘

Detailed appendices cover metric and English system units and conversions,
detailed steam and gas tables, heat transfer properties, and nuclear reactor system
descriptions.
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