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Preface

This text is intended as an introduction to elementary probability theory and stochastic
processes. It is particularly well suited for those wanting to see how probability theory
can be applied to the study of phenomena in fields such as engineering, computer sci-
ence, management science, the physical and social sciences, and operations research.

It is generally felt that there are two approaches to the study of probability theory.
One approach is heuristic and nonrigorous and attempts to develop in the student an
intuitive feel for the subject that enables him or her to “think probabilistically.” The
other approach attempts a rigorous development of probability by using the tools of
measure theory. It is the first approach that is employed in this text. However, because
it is extremely important in both understanding and applying probability theory to be
able to “think probabilistically,” this text should also be useful to students interested
primarily in the second approach.

New to This Edition

The eleventh edition includes new text material, examples, and exercises. Some of the
key new examples are the following.

* Example 3.6, which derives the density function of the t-random variable.

» Example 3.32, which analyzes a serve and rally competition where the winner
of a rally is the server for the next point.

» Example 5.19, which considers a one lane road with no overtaking.

* Example 6.22, which uses the reverse chain to analyze a sequential queuing
system.

* Example 7.20, which analyzes a system where both people and buses randomly
arrive at a bus stop.

New sections include

» Section 4.4, on the long-run proportions and limiting probabilities of a Markov
chain.

* Section 5.5, on random intensity functions and Hawkes processes.

* Section 6.7, on the reverse chain of continuous-time Markov chains

» Section 10.5, which analyzes the maximum variable of a Brownian motion with
drift process.

We have also tried to simplify and clarify existing material wherever possible.
Examples include a new proof of the result that the number of events of a non-
homogeneous Poisson process that occur in an interval is Poisson distributed, as



xii Preface

well as the introduction of Wald's Equation (Theorem 7.2) and its subsequent use in
proving the elementary renewal theorem.

Course

Ideally, this text would be used in a one-year course in probability models. Other
possible courses would be a one-semester course in introductory probability theory
(involving Chapters 1-3 and parts of others) or a course in elementary stochastic
processes. The textbook is designed to be flexible enough to be used in a variety of
possible courses. For example, I have used Chapters 5 and 8, with smatterings from
Chapters 4 and 6, as the basis of an introductory course in queueing theory.

Examples and Exercises

Many examples are worked out throughout the text, and there are also a large number
of exercises to be solved by students. More than 100 of these exercises have been
starred and their solutions provided at the end of the text. These starred problems can
be used for independent study and test preparation. An Instructor’s Manual, contain-
ing solutions to all exercises, is available free to instructors who adopt the book for
class.

Organization

Chapters 1 and 2 deal with basic ideas of probability theory. In Chapter 1 an axiomatic
framework is presented, while in Chapter 2 the important concept of a random vari-
able is introduced. Section 2.6.1 gives a simple derivation of the joint distribution of
the sample mean and sample variance of a normal data sample.

Chapter 3 is concerned with the subject matter of conditional probability and con-
ditional expectation. “Conditioning” is one of the key tools of probability theory, and
it is stressed throughout the book. When properly used, conditioning often enables us
to easily solve problems that at first glance seem quite difficult. The final section of
this chapter presents applications to (1) a computer list problem, (2) a random graph,
and (3) the Polya urn model and its relation to the Bose-Einstein distribution. Section
3.6.5 presents k-record values and the surprising Ignatov’s theorem.

In Chapter 4 we come into contact with our first random, or stochastic, process,
known as a Markov chain, which is widely applicable to the study of many real-world
phenomena. Applications to genetics and production processes are presented. The
concept of time reversibility is introduced and its usefulness illustrated. Section 4.5.3
presents an analysis, based on random walk theory, of a probabilistic algorithm for
the satisfiability problem. Section 4.6 deals with the mean times spent in transient
states by a Markov chain. Section 4.9 introduces Markov chain Monte Carlo methods.
In the final section we consider a model for optimally making decisions known as a
Markovian decision process.

In Chapter 5 we are concerned with a type of stochastic process known as a
counting process. In particular, we study a kind of counting process known as a
Poisson process. The intimate relationship between this process and the exponential
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distribution is discussed. New derivations for the Poisson and nonhomogeneous
Poisson processes are discussed. Examples relating to analyzing greedy algorithms,
minimizing highway encounters, collecting coupons, and tracking the AIDS virus, as
well as material on compound Poisson processes, are included in this chapter. Section
5.2.4 gives a simple derivation of the convolution of exponential random variables.

Chapter 6 considers Markov chains in continuous time with an emphasis on birth
and death models. Time reversibility is shown to be a useful concept, as it is in the
study of discrete-time Markov chains. Section 6.7 presents the computationally
important technique of uniformization.

Chapter 7, the renewal theory chapter, is concerned with a type of counting pro-
cess more general than the Poisson. By making use of renewal reward processes,
limiting results are obtained and applied to various fields. Section 7.9 presents new
results concerning the distribution of time until a certain pattern occurs when a
sequence of independent and identically distributed random variables is observed.
In Section 7.9.1, we show how renewal theory can be used to derive both the mean
and the variance of the length of time until a specified pattern appears, as well as
the mean time until one of a finite number of specified patterns appears. In Section
7.9.2, we suppose that the random variables are equally likely to take on any of m
possible values, and compute an expression for the mean time until a run of m dis-
tinct values occurs. In Section 7.9.3, we suppose the random variables are continuous
and derive an expression for the mean time until a run of m consecutive increasing
values occurs.

Chapter 8 deals with queueing, or waiting line, theory. After some preliminaries
dealing with basic cost identities and types of limiting probabilities, we consider
exponential queueing models and show how such models can be analyzed. Included
in the models we study is the important class known as a network of queues. We
then study models in which some of the distributions are allowed to be arbitrary.
Included are Section 8.6.3 dealing with an optimization problem concerning a
single server, general service time queue, and Section 8.8, concerned with a single
server, general service time queue in which the arrival source is a finite number of
potential users.

Chapter 9 is concerned with reliability theory. This chapter will probably be of
greatest interest to the engineer and operations researcher. Section 9.6.1 illustrates a
method for determining an upper bound for the expected life of a parallel system of
not necessarily independent components and Section 9.7.1 analyzes a series structure
reliability model in which components enter a state of suspended animation when one
of their cohorts fails.

Chapter 10 is concerned with Brownian motion and its applications. The theory
of options pricing is discussed. Also, the arbitrage theorem is presented and its rela-
tionship to the duality theorem of linear programming is indicated. We show how the
arbitrage theorem leads to the Black—Scholes option pricing formula.

Chapter 11 deals with simulation, a powerful tool for analyzing stochastic mod-
els that are analytically intractable. Methods for generating the values of arbitrarily
distributed random variables are discussed, as are variance reduction methods for
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increasing the efficiency of the simulation. Section 11.6.4 introduces the valuable
simulation technique of importance sampling, and indicates the usefulness of tilted
distributions when applying this method.
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Introduction to
Probability Theory

1.1 Introduction

Any realistic model of a real-world phenomenon must take into account the possibility
of randomness. That is, more often than not, the quantities we are interested in will not
be predictable in advance but, rather, will exhibit an inherent variation that should be
taken into account by the model. This is usually accomplished by allowing the model to
be probabilistic in nature. Such a model is, naturally enough, referred to as a probability
model.

The majority of the chapters of this book will be concerned with different probability
models of natural phenomena. Clearly, in order to master both the “model building”
and the subsequent analysis of these models, we must have a certain knowledge of basic
probability theory. The remainder of this chapter, as well as the next two chapters, will
be concerned with a study of this subject.

1.2 Sample Space and Events

Suppose that we are about to perform an experiment whose outcome is not predictable in
advance. However, while the outcome of the experiment will not be known in advance,
let us suppose that the set of all possible outcomes is known. This set of all possible
outcomes of an experiment is known as the sample space of the experiment and is
denoted by S.

Introduction to Probability Models, Eleventh Edition. hup://dx.doi.org/10.1016/B978-0-12-407948-9.00001-3
© 2014 Elsevier Inc. All rights reserved.
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Some examples are the following.

. If the experiment consists of the flipping of a coin, then

S =4{H, T]

where H means that the outcome of the toss is a head and T that it is a tail.

. If the experiment consists of rolling a die, then the sample space is

S =1{1,2,3,4,5,6)

where the outcome i means that i appeared on the die, i = 1,2,3,4,5, 6.

. If the experiments consists of flipping two coins, then the sample space consists of

the following four points:
§={(H H),(HT), (T, H),(T,T})

The outcome will be (H, H) if both coins come up heads; it will be (H, T') if the
first coin comes up heads and the second comes up tails; it will be (7, H) if the first
comes up tails and the second heads; and it will be (7, T') if both coins come up
tails.

. If the experiment consists of rolling two dice, then the sample space consists of the

following 36 points:

(1, 1), (1,2), (1.3). (1,4),(1,5), (1, 6)
2, 1), (2,2), (2,3, (2, 4), 2,5, 2,6
(3, 1).(3,2), (3.3). (3,4), (3,5), (3,6)
1@, 1).(4.2). 4.3), (4,4). (4,5). (4. 6)
(5.1),(5,2),(5.3), (5,4, (5,5), (5, 6)
6, 1), (6,2). (6.3), (6,4), (6,5), (6, 6)

where the outcome (i, j) is said to occur if i appears on the first die and j on the
second die.

. If the experiment consists of measuring the lifetime of a car, then the sample space

consists of all nonnegative real numbers. That is,

S = [0, o) ]

Any subset E of the sample space S is known as an event. Some examples of events

are the following.

I7,

o

In Example (1), if E = {H}, then E is the event that a head appears on the flip of
the coin. Similarly, if £ = {T}, then E would be the event that a tail appears.

In Example (2), if E = {1}, then E is the event that one appears on the roll of the
die. If E = {2,4. 6}, then £ would be the event that an even number appears on
the roll.

* The set (a. b) is defined to consist of all points x such that @ < x < b. The set |a, b] is defined to consist
of all points x such that a < x < b. The sets (a, b| and |a, b) are defined, respectively, to consist of all
points x such that ¢ < x < b and all points x such thata < x < b.



