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Foreword

he very first video game was built entirely out of hardware, but rapid ad-
Tvancements in microprocessors have changed all that. These days, video
games are played on versatile PCs and specialized video game consoles that
use software to make it possible to offer a tremendous variety of gaming ex-
periences. It’s been 50 years since those first primitive games, but the industry
is still considered by many to be immature. It may be young, but when you
take a closer look, you will find that things have been developing rapidly.
Video games are now a multibillion-dollar industry covering a wide range of
demographics.

Video games come in all shapes and sizes, falling into categories or
“genres” covering everything from solitaire to massively multiplayer online
role-playing games, and these games are played on virtually anything with a
microchip in it. These days, you can get games for your PC, your cell phone,
as well as a number of different specialized gaming consoles —both handheld
and those that connect to your home TV. These specialized home consoles
tend to represent the cutting edge of gaming technology, and the pattern of
these platforms being released in cycles has come to be called console “gen-
erations.” The powerhouses of this latest generation are Microsoft’s Xbox 360
and Sony’s PLAYSTATION 3, but the ever-present PC should never be over-
looked, and the extremely popular Nintendo Wii represents something new
this time around.
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Foreword

The recent explosion of downloadable and casual games has added even
more complexity to the diverse world of commercial video games. Even so,
big games are still big business. The incredible computing power available
on today’s complicated platforms has made room for increased complexity in
the software. Naturally, all this advanced software has to be created by some-
one, and that has driven up the size of development teams—not to mention
development costs. As the industry matures, we're always looking for better,
more efficient ways to build our products, and development teams have be-
gun compensating for the increased complexity by taking advantage of things
like reusable software and middleware.

With so many different styles of game on such a wide array of platforms,
there cannot be any single ideal software solution. However, certain patterns
have developed, and there is a vast menu of potential solutions out there. The
problem today is choosing the right solution to fit the needs of the particular
project. Going deeper, a development team must consider all the different as-
pects of a project and how they fit together. It is rare to find any one software
package that perfectly suits every aspect of a new game design.

Those of us who are now veterans of the industry found ourselves pio-
neering unknown territory. Few programmers of our generation have Com-
puter Science degrees (Matt’s is in Aeronautical Engineering, and Jason’s is
in Systems Design Engineering), but these days many colleges are starting to
programs and degrees in video games. The students and developers of today
need a good place to turn to for solid game-development information. For
pure high-end graphics, there are a lot of sources of very good information
from research to practical jewels of knowledge. However, these sources are
often not directly applicable to production game environments or suffer from
not having actual production-quality implementations. For the rest of game
development, there are so-called beginner books that so gloss over the details
and act as if they invented everything without giving references that they are
just not useful or often even accurate. Then there are high-end specialty books
for various niches like physics, collision, AL etc. But these can be needlessly
obtuse or too high level to be understood by all, or the piecemeal approach just
doesn’t all fit together. Many are even so directly tied to a particular piece of
technology as to become rapidly dated as the hardware and software change.

Then there is the Internet, which is an excellent supplementary tool for
knowledge gathering. However, broken links, widely inaccurate data, and
variable-to-poor quality often make it not useful at all unless you know ex-
actly what you are after.

Enter Jason Gregory, himself an industry veteran with experience at
Naughty Dog—one of the most highly regarded video game studios in the
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world. While teaching a course in game programming at USC, Jason found
himself facing a shortage of textbooks covering the fundamentals of video-
game architecture. Luckily for the rest of us, he has taken it upon himself to
fill that gap.

What Jason has done is pull together production-quality knowledge actu-
ally used in shipped game projects and bring together the entire game-devel-
opment picture. His experience has allowed him to bring together not only
the ideas and techniques but also actual code samples and implementation
examples to show you how the pieces come together to actually make a game.
The references and citations make it a great jumping-off point to dig deeper
into any particular aspect of the process. The concepts and techniques are the
actual ones we use to create games, and while the examples are often ground-
ed in a technology, they extend way beyond any particular engine or API.

This is the kind of book we wanted when we were getting started, and we
think it will prove very instructive to people just starting out as well as those
with experience who would like some exposure to the larger context.

Jeff Lander
Matthew Whiting



Preface

elcome to Game Engine Architecture. This book aims to present a com-
Wplete discussion of the major components that make up a typical com-
mercial game engine. Game programming is an immense topic, so we have a
lot of ground to cover. Nevertheless, I trust you’ll find that the depth of our
discussions is sufficient to give you a solid understanding of both the theory
and the common practices employed within each of the engineering disci-
plines we’ll cover. That said, this book is really just the beginning of a fasci-
nating and potentially life-long journey. A wealth of information is available
on all aspects of game technology, and this text serves both as a foundation-
laying device and as a jumping-off point for further learning.

Our focus in this book will be on game engine technologies and architec-
ture. This means we'll cover both the theory underlying the various subsys-
tems that comprise a commercial game engine and also the data structures,
algorithms, and software interfaces that are typically used to implement them.
The line between the game engine and the game is rather blurry. We’ll fo-
cus primarily on the engine itself, including a host of low-level foundation
systems, the rendering engine, the collision system, the physics simulation,
character animation, and an in-depth discussion of what I call the gameplay
foundation layer. This layer includes the game’s object model, world editor,
event system, and scripting system. We’ll also touch on some aspects of game-
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play programming, including player mechanics, cameras, and Al. However,
by necessity, the scope of these discussions will be limited mainly to the ways
in which gameplay systems interface with the engine.

This book is intended to be used as a course text for a two- or three-course
college-level series in intermediate game programming. Of course, it can also
be used by amateur software engineers, hobbyists, self-taught game program-
mers, and existing members of the game industry alike. Junior engineers can
use this text to solidify their understanding of game mathematics, engine ar-
chitecture, and game technology. And some senior engineers who have de-
voted their careers to one particular specialty may benefit from the bigger
picture presented in these pages, as well.

To get the most out of this book, you should have a working knowledge
of basic object-oriented programming concepts and at least some experience
programming in C++. Although a host of new and exciting languages are be-
ginning to take hold within the game industry, industrial-strength 3D game
engines are still written primarily in C or C++, and any serious game pro-
grammer needs to know C++. We'll review the basic tenets of object-oriented
programming in Chapter 3, and you will no doubt pick up a few new C++
tricks as you read this book, but a solid foundation in the C++ language is best
obtained from [39], [31], and [32]. If your C++ is a bit rusty, I recommend you
refer to these or similar books to refresh your knowledge as you read this text.
If you have no prior C++ experience, you may want to consider reading at least
the first few chapters of [39], or working through a few C++ tutorials online,
before diving into this book.

The best way to learn computer programming of any kind is to actually
write some code. As you read through this book, I strongly encourage you to
select a few topic areas that are of particular interest to you and come up with
some projects for yourself in those areas. For example, if you find character
animation interesting, you could start by installing Ogre3D and exploring its
skinned animation demo. Then you could try to implement some of the anima-
tion blending techniques described in this book, using Ogre. Next you might
decide to implement a simple joypad-controlled animated character that can
run around on a flat plane. Once you have something relatively simple work-
ing, expand upon it! Then move on to another area of game technology. Rinse
and repeat. It doesn’t particularly matter what the projects are, as long as
you're practicing the art of game programming, not just reading about it.

Game technology is a living, breathing thing that can never be entirely
captured within the pages of a book. As such, additional resources, errata,
updates, sample code, and project ideas will be posted from time to time on
this book’s website at http://gameenginebook.com.
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