tectu

®
I
iting

Arch

Ine

=
-
pu-amry
©
— =
-
=
<
B
D
b =]
=
Jr— |
=
(="
p—
—
L
=
=
=
Lo

Game Engine Architecture

Jason Gregory

LU 7

E2010002359
A K Peters, Ltd.

Natick, Massac husetts

Editorial, Sales, and Customer Service Office

A K Peters, Ltd.

5 Commonwealth Road, Suite 2C
Natick, Massachusetts
www.akpeters.com

Copyright © 2009 by A K Peters, Ltd.

All rights reserved. No part of the material protected by this copyright notice
may be reproduced or utilized in any form, electronic or mechanical, including
photocopying, recording, or by any information storage and retrieval system,
without written permission from the copyright owner.

Library of Congress Cataloging-in-Publication Data

Gregory, Jason, 1970-
Game engine architecture / Jason Gregory.
p. cm.
Includes bibliographical references and index.
ISBN 978-1-56881-413-1 (alk. paper)
1. Computer games--Programming. 2. Computer architecture. I. Title.
QA76.76.C672G77 2009
794.8'1526--dc22
2009013092

Havok Physics (TM) is a trademark of Havok.

Printed in the United States of America
14 13 12 11 10 109876543

Game Engine Architecture

Dedicated to
Trina, Evan and Quinn Gregory,

in memory of our heros,
Joyce Osterhus and Kenneth Gregory.

Foreword

he very first video game was built entirely out of hardware, but rapid ad-
Tvancements in microprocessors have changed all that. These days, video
games are played on versatile PCs and specialized video game consoles that
use software to make it possible to offer a tremendous variety of gaming ex-
periences. It’s been 50 years since those first primitive games, but the industry
is still considered by many to be immature. It may be young, but when you
take a closer look, you will find that things have been developing rapidly.
Video games are now a multibillion-dollar industry covering a wide range of
demographics.

Video games come in all shapes and sizes, falling into categories or
“genres” covering everything from solitaire to massively multiplayer online
role-playing games, and these games are played on virtually anything with a
microchip in it. These days, you can get games for your PC, your cell phone,
as well as a number of different specialized gaming consoles —both handheld
and those that connect to your home TV. These specialized home consoles
tend to represent the cutting edge of gaming technology, and the pattern of
these platforms being released in cycles has come to be called console “gen-
erations.” The powerhouses of this latest generation are Microsoft’s Xbox 360
and Sony’s PLAYSTATION 3, but the ever-present PC should never be over-
looked, and the extremely popular Nintendo Wii represents something new
this time around.

Xiii

Xiv

Foreword

The recent explosion of downloadable and casual games has added even
more complexity to the diverse world of commercial video games. Even so,
big games are still big business. The incredible computing power available
on today’s complicated platforms has made room for increased complexity in
the software. Naturally, all this advanced software has to be created by some-
one, and that has driven up the size of development teams—not to mention
development costs. As the industry matures, we're always looking for better,
more efficient ways to build our products, and development teams have be-
gun compensating for the increased complexity by taking advantage of things
like reusable software and middleware.

With so many different styles of game on such a wide array of platforms,
there cannot be any single ideal software solution. However, certain patterns
have developed, and there is a vast menu of potential solutions out there. The
problem today is choosing the right solution to fit the needs of the particular
project. Going deeper, a development team must consider all the different as-
pects of a project and how they fit together. It is rare to find any one software
package that perfectly suits every aspect of a new game design.

Those of us who are now veterans of the industry found ourselves pio-
neering unknown territory. Few programmers of our generation have Com-
puter Science degrees (Matt’s is in Aeronautical Engineering, and Jason’s is
in Systems Design Engineering), but these days many colleges are starting to
programs and degrees in video games. The students and developers of today
need a good place to turn to for solid game-development information. For
pure high-end graphics, there are a lot of sources of very good information
from research to practical jewels of knowledge. However, these sources are
often not directly applicable to production game environments or suffer from
not having actual production-quality implementations. For the rest of game
development, there are so-called beginner books that so gloss over the details
and act as if they invented everything without giving references that they are
just not useful or often even accurate. Then there are high-end specialty books
for various niches like physics, collision, AL etc. But these can be needlessly
obtuse or too high level to be understood by all, or the piecemeal approach just
doesn’t all fit together. Many are even so directly tied to a particular piece of
technology as to become rapidly dated as the hardware and software change.

Then there is the Internet, which is an excellent supplementary tool for
knowledge gathering. However, broken links, widely inaccurate data, and
variable-to-poor quality often make it not useful at all unless you know ex-
actly what you are after.

Enter Jason Gregory, himself an industry veteran with experience at
Naughty Dog—one of the most highly regarded video game studios in the

Foreword

XV

world. While teaching a course in game programming at USC, Jason found
himself facing a shortage of textbooks covering the fundamentals of video-
game architecture. Luckily for the rest of us, he has taken it upon himself to
fill that gap.

What Jason has done is pull together production-quality knowledge actu-
ally used in shipped game projects and bring together the entire game-devel-
opment picture. His experience has allowed him to bring together not only
the ideas and techniques but also actual code samples and implementation
examples to show you how the pieces come together to actually make a game.
The references and citations make it a great jumping-off point to dig deeper
into any particular aspect of the process. The concepts and techniques are the
actual ones we use to create games, and while the examples are often ground-
ed in a technology, they extend way beyond any particular engine or API.

This is the kind of book we wanted when we were getting started, and we
think it will prove very instructive to people just starting out as well as those
with experience who would like some exposure to the larger context.

Jeff Lander
Matthew Whiting

Preface

elcome to Game Engine Architecture. This book aims to present a com-
Wplete discussion of the major components that make up a typical com-
mercial game engine. Game programming is an immense topic, so we have a
lot of ground to cover. Nevertheless, I trust you’ll find that the depth of our
discussions is sufficient to give you a solid understanding of both the theory
and the common practices employed within each of the engineering disci-
plines we’ll cover. That said, this book is really just the beginning of a fasci-
nating and potentially life-long journey. A wealth of information is available
on all aspects of game technology, and this text serves both as a foundation-
laying device and as a jumping-off point for further learning.

Our focus in this book will be on game engine technologies and architec-
ture. This means we'll cover both the theory underlying the various subsys-
tems that comprise a commercial game engine and also the data structures,
algorithms, and software interfaces that are typically used to implement them.
The line between the game engine and the game is rather blurry. We’ll fo-
cus primarily on the engine itself, including a host of low-level foundation
systems, the rendering engine, the collision system, the physics simulation,
character animation, and an in-depth discussion of what I call the gameplay
foundation layer. This layer includes the game’s object model, world editor,
event system, and scripting system. We’ll also touch on some aspects of game-

Xvii

xviii

Preface

play programming, including player mechanics, cameras, and Al. However,
by necessity, the scope of these discussions will be limited mainly to the ways
in which gameplay systems interface with the engine.

This book is intended to be used as a course text for a two- or three-course
college-level series in intermediate game programming. Of course, it can also
be used by amateur software engineers, hobbyists, self-taught game program-
mers, and existing members of the game industry alike. Junior engineers can
use this text to solidify their understanding of game mathematics, engine ar-
chitecture, and game technology. And some senior engineers who have de-
voted their careers to one particular specialty may benefit from the bigger
picture presented in these pages, as well.

To get the most out of this book, you should have a working knowledge
of basic object-oriented programming concepts and at least some experience
programming in C++. Although a host of new and exciting languages are be-
ginning to take hold within the game industry, industrial-strength 3D game
engines are still written primarily in C or C++, and any serious game pro-
grammer needs to know C++. We'll review the basic tenets of object-oriented
programming in Chapter 3, and you will no doubt pick up a few new C++
tricks as you read this book, but a solid foundation in the C++ language is best
obtained from [39], [31], and [32]. If your C++ is a bit rusty, I recommend you
refer to these or similar books to refresh your knowledge as you read this text.
If you have no prior C++ experience, you may want to consider reading at least
the first few chapters of [39], or working through a few C++ tutorials online,
before diving into this book.

The best way to learn computer programming of any kind is to actually
write some code. As you read through this book, I strongly encourage you to
select a few topic areas that are of particular interest to you and come up with
some projects for yourself in those areas. For example, if you find character
animation interesting, you could start by installing Ogre3D and exploring its
skinned animation demo. Then you could try to implement some of the anima-
tion blending techniques described in this book, using Ogre. Next you might
decide to implement a simple joypad-controlled animated character that can
run around on a flat plane. Once you have something relatively simple work-
ing, expand upon it! Then move on to another area of game technology. Rinse
and repeat. It doesn’t particularly matter what the projects are, as long as
you're practicing the art of game programming, not just reading about it.

Game technology is a living, breathing thing that can never be entirely
captured within the pages of a book. As such, additional resources, errata,
updates, sample code, and project ideas will be posted from time to time on
this book’s website at http://gameenginebook.com.

Preface

Xix

Acknowledgments

No book is created in a vacuum, and this one is certainly no exception. This
book would not have been possible without the help of my family, friends,
and colleagues in the game industry, and I'd like to extend warm thanks to
everyone who helped me to bring this project to fruition.

Of course, the ones most impacted by a project like this one are invariably
the author’s family. So I'd like to start by offering a special thank-you to my
wife Trina, who has been a pillar of strength during this difficult time, tak-
ing care of our two boys Evan (age 5) and Quinn (age 3) day after day (and
night after night!) while I holed myself up to get yet another chapter under
my belt, forgoing her own plans to accommodate my schedule, doing my
chores as well as her own (more often than I'd like to admit), and always giv-
ing me kind words of encouragement when I needed them the most. I'd also
like to thank my eldest son Evan for being patient as he endured the absence
of his favorite video game playing partner, and his younger brother Quinn
for always welcoming me home after a long day’s work with huge hugs and
endless smiles.

I'would also like to extend special thanks to my editors, Matt Whiting and
Jeff Lander. Their insightful, targeted, and timely feedback was always right
on the money, and their vast experience in the game industry has helped to
give me confidence that the information presented in these pages is as accu-
rate and up-to-date as humanly possible. Matt and Jeff were both a pleasure
to work with, and I am honored to have had the opportunity to collaborate
with such consummate professionals on this project. I'd like to thank Jeff in
particular for putting me in touch with Alice Peters and helping me to get this
project off the ground in the first place.

A number of my colleagues at Naughty Dog also contributed to this
book, either by providing feedback or by helping me with the structure
and topic content of one of the chapters. I'd like to thank Marshall Robin
and Carlos Gonzalez-Ochoa for their guidance and tutelage as I wrote the
rendering chapter, and Pal-Kristian Engstad for his excellent and insightful
feedback on the text and content of that chapter. I'd also like to thank Chris-
tian Gyrling for his feedback on various sections of the book, including the
chapter on animation (which is one of his many specialties). My thanks also
go to the entire Naughty Dog engineering team for creating all of the in-
credible game engine systems that I highlight in this book. Special thanks
go to Keith Schaeffer of Electronic Arts for providing me with much of the
raw content regarding the impact of physics on a game, found in Section
12.1. Id also like to thank Paul Keet of Electronic Arts and Steve Ranck, the

XX

Preface

lead engineer on the Hydro Thunder project at Midway San Diego, for their
mentorship and guidance over the years. While they did not contribute to
the book directly, their influences are echoed on virtually every page in one
way or another.

This book arose out of the notes I developed for a course called ITP-485:
Programming Game Engines, which I have been teaching under the auspices
of the Information Technology Program at the University of Southern Cali-
fornia for approximately three years now. I would like to thank Dr. Anthony
Borquez, the director of the ITP department at the time, for hiring me to de-
velop the ITP-485 course curriculum in the first place. I'd also like to extend
warm thanks to Ashish Soni, the current ITP director, for his continued sup-
port and encouragement as ITP-485 continues to evolve.

My extended family and friends also deserve thanks, in part for their un-
wavering encouragement, and in part for entertaining my wife and our two
boys on so many occasions while I was working. I'd like to thank my sister- and
brother-in-law, Tracy Lee and Doug Provins, my cousin-in-law Matt Glenn,
and all of our incredible friends, including: Kim and Drew Clark, Sherilyn
and Jim Kritzer, Anne and Michael Scherer, and Kim and Mike Warner. My
father Kenneth Gregory wrote a book on investing in the stock market when
I was a teenager, and in doing so he inspired me to write a book. For this and
so much more, I am eternally grateful to him. I'd also like to thank my mother
Erica Gregory, in part for her insistence that I embark on this project, and in
part for spending countless hours with me when I was a child, beating the art
of writing into my cranium —I owe my writing skills (not to mention my work
ethic... and my rather twisted sense of humor...) entirely to her!

Last but certainly not least, I'd like to thank Alice Peters and Kevin Jack-
son-Mead, as well as the entire A K Peters staff, for their Herculean efforts
in publishing this book. Alice and Kevin have both been a pleasure to work
with, and I truly appreciate both their willingness to bend over backwards to
get this book out the door under very tight time constraints, and their infinite
patience with me as a new author.

Jason Gregory
April 2009

Foreword

Preface

Foundations

Introduction

1.1 Structure of a Typical Game Team
1.2 What Is a Game?

1.3 What Is a Game Engine?

1.4 Engine Differences Across Genres
1.5 Game Engine Survey

1.6 Runtime Engine Architecture

1.7 Tools and the Asset Pipeline

Tools of the Trade

2.1 Version Control

2.2 Microsoft Visual Studio
23 Profiling Tools

vii

Contents

Xiii

XVii

Viii

Contents

2.4
25

Memory Leak and Corruption Detection
Other Tools

Fundamentals of Software
Engineering for Games

3.1
32
33

C++ Review and Best Practices
Data, Code, and Memory in C/C++
Catching and Handling Errors

3D Math for Games

4.1

4.2
4.3
4.4
4.5
4.6
4.7
4.8

Solving 3D Problems in 2D

Points and Vectors

Matrices

Quaternions

Comparison of Rotational Representations
Other Useful Mathematical Objects
Hardware-Accelerated SIMD Math

Random Number Generation

Low-Level Engine Systems

Engine Support Systems

51

52
53
54
5.5

Subsystem Start-Up and Shut-Down
Memory Management

Containers

Strings

Engine Configuration

Resources and the File System

6.1
6.2

The Game Loop and Real-Time Simulation

7.1
7.2

File System
The Resource Manager

The Rendering Loop
The Game Loop

87
88

91

91
98
128

137

137
138
151
169
177
181
185
192

195

197

197
205
223
242
252

261

262
272

303

303
304

Contents

|
10

11

73
74
7.5
7.6
77

Game Loop Architectural Styles
Abstract Timelines

Measuring and Dealing with Time
Multiprocessor Game Loops
Networked Multiplayer Game Loops

Human Interface Devices (HID)

8.1

8.2
83
8.4
8.5
8.6

Types of Human Interface Devices
Interfacing with a HID

Types of Inputs

Types of Outputs

Game Engine HID Systems

Human Interface Devices in Practice

Tools for Debugging and Development

9.l

9.2
93
94
9.5
9.6
9.7
9.8

Logging and Tracing

Debug Drawing Facilities

In-Game Menus

In-Game Console

Debug Cameras and Pausing the Game
Cheats

Screen Shots and Movie Capture
In-Game Profiling

Graphics and Motion

The Rendering Engine

10.1

10.2
10.3
10.4

Foundations of Depth-Buffered
Triangle Rasterization

The Rendering Pipeline

Advanced Lighting and Global lllumination

Visual Effects and Overlays

Animation Systems

1.1
11.2

Types of Character Animation
Skeletons

307
310
312
324
333

339

339

341
343
348
349
366

367

367
372
379
382
383
384
384
385

397
399

400
444
469

48]

491

491
496

Contents

12

13

14

1.3 Poses

1.4 Clips

1.5 Skinning and Matrix Palette Generation
1.6 Animation Blending

1.7 Post-Processing

1.8 Compression Techniques

1.9 Animation System Architecture

1110 The Animation Pipeline

1.1 Action State Machines

1.12 Animation Controllers

Collision and Rigid Body Dynamics

121 Do You Want Physics in Your Game?

122 Collision/Physics Middleware

123 The Collision Detection System

12.4 Rigid Body Dynamics

12.5 Integrating a Physics Engine into Your Game
126 A Look Ahead: Advanced Physics Features

Gameplay

Introduction to Gameplay Systems

13. Anatomy of a Game World

13.2 Implementing Dynamic Elements: Game Objects
13.3 Data-Driven Game Engines

134 The Game World Editor

Runtime Gameplay Foundation Systems

14.1 Components of the Gameplay
Foundation System

4.2 Runtime Object Model Architectures
143 World Chunk Data Formats

4.4 Loading and Streaming Game Worlds
14.5 Object References and World Queries
14.6 Updating Game Objects in Real Time

499
504

518
523
542
545
552
553
568
593

595
596
601
603
630
666
684

687

689

690
695
698
699

/m

m
715
734
741
750
757

Contents

Xi

14.7 Events and Message-Passing
14.8 Scripting
14.9 High-Level Game Flow

Conclusion

You Mean There’s More?

151 Some Engine Systems We Didn’t Cover
152 Gameplay Systems

References

Index

773
794
817

819

821

821
823

827
831

