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Fluid Dynamics



Preface

This book is the first of a series on fluid dynamics that will comprise the following
four parts:

Part 1. Classical Fluid Dynamics

Part 2. Asymptotic Problems of Fluid Dynamics
Part 3. Boundary Layers

Part 4. Hydrodynamic Stability Theory

The series is designed to give a comprehensive and coherent description of fluid dy-
namics, starting with chapters on classical theory suitable for an introductory un-
dergraduate lecture course, and then progressing through more advanced material
up to the level of modern research in the field. Our main attention will be on high-
Reynolds-number flows, both incompressible and compressible. Correspondingly, the
target reader groups are undergraduate and MSc students reading mathematics, aero-
nautical engineering, or physics, as well as PhD students and established researchers
working in the field.

Over the last 50 years, there have been major advances in various aspects of fluid
dynamics. In particular, significant progress has been achieved in understanding the
behaviour of compressible fluid flows, including the supersonic, transonic, and hyper-
sonic flow regimes. Also during these years, two fundamental fluid-dynamic phenom-
ena, namely boundary-layer separation and laminar—turbulent transition, have received
significant attention from researchers.

Success in studying these and other phenomena has been facilitated by the de-
velopment of modern asymptotic methods. These are now an inherent part of applied
mathematics, but it was fluid dynamics where various asymptotic techniques, including
the method of matched asymptotic expansions, were first formulated and used. Keep-
ing this in mind, we start Part 2 of this series with a discussion of the mathematical
aspects of the asymptotic theory. This is followed by an exposition of the results of
inviscid flow theory, starting with thin aerofoil theory for incompressible and subsonic
flows, steady and unsteady. Then we turn our attention to the properties of supersonic
flows, where the linear Ackeret theory is followed by second-order Buzemann analysis.
Both the flow near the aerofoil surface and in the far field are discussed. Part 2 also
includes a discussion of the properties of transonic and hypersonic inviscid flows. We
will conclude Part 2 with a brief discussion of viscous low-Reynolds-number flows.

Part 3 is devoted to the theory of high-Reynolds-number fluid flows. We first con-
sider a class of flows that can be described in the framework of classical boundary-layer
theory. These include the Blasius flow past a flat plate and the Falkner—Skan solutions
for the flow over a wedge surface. We also discuss the Chapman shear-layer flow and
Schlichting’s solution for the laminar jet. Among other examples are Tollmien’s solu-
tion for the viscous wake behind a rigid body and the periodic boundary layer on the
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surface of a rapidly rotating cylinder. This is followed by a discussion of the proper-
ties of compressible boundary layers, including hypersonic boundary layers, which are
known to involve extremely strong heating of the gas near the body surface. We then
turn our attention to the phenomenon of flow separation from a rigid-body surface,
which cannot be described in the framework of classical boundary-layer theory. In-
stead, one has to use the wviscous—inviscid interaction concept, also known under the
name of the triple-deck model. We first formulate the triple-deck theory in application
to self-induced boundary-layer separation in supersonic flow, and then use it to de-
scribe the incompressible flow near the trailing edge of a flat plate. This is followed by
an exposition of other applications, including incompressible flow separation from a
smooth body surface and marginal separation theory, which describes low separation
at the leading edge of a thin aerofoil.

Part 4 of the series is devoted to hydrodynamic stability theory, which serves to pre-
dict the onset of laminar—turbulent transition in fluid flows. Similar to Part 3, we start
with the classical results. We introduce the concept of linear instability of fluid flows,
and formulate the Orr—Sommerfeld equation, which describes the stability properties
of parallel and quasi-parallel flows, such as boundary layers. We also discuss the sta-
bility properties of ‘inviscid flows’ governed by the Rayleigh equation. This is followed
by an exposition of the results of the application of the theory to various flows. Then
we turn our attention to more recent developments, including receptivity theory and
nonlinear stability theory. Receptivity theory is now an integral part of the theoretical
predictions of laminar—turbulent transition in aerodynamic flows. It deals with the
process of excitation of instability modes in the boundary layer, namely, the genera-
tion of Tollmien-Schlichting waves, cross-flow vortices, and Gortler vortices, resulting
from the interaction of the boundary layer with external perturbations, for example
acoustic noise, free-stream turbulence, or wall roughness. Finally, the nonlinear sta-
bility of fluid flows will be discussed, including the Landau-Stuart weakly nonlinear
theory, and the derivation of the Ginzburg-Landau equation. We conclude Part 4 with
a discussion of linear and nonlinear critical layers.

The present Part 1 is aimed at giving an introduction to fluid dynamics, and to
prepare the reader for the more advanced material in Parts 2, 3, and 4. The book series
is based on courses given by the authors over a number of years at the Moscow Institute
of Physics and Technology, the University of Manchester, and Imperial College London.
In fact, the majority of the material follows closely the actual lecture notes, and is
supplemented with Exercises that have been used in problem classes.

Our observation is that the students find it helpful when the results of the theoret-
ical analysis of fluid motion are compared with experiments. We make such compar-
isons, where appropriate, throughout the book series. Every effort has been made to
contact the holders of copyright in materials reproduced in the book. Any omissions
will be rectified in future printings if notice is given to the publisher.
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Introduction

The history of theoretical fluid dynamics dates back over 250 years, originating in
1755, when Euler derived the differential equations describing the ‘frictionless’ motion
of an incompressible fluid. Euler was the first to recognise the importance of the
pressure forces acting inside the moving fluid, but he disregarded the forces of internal
viscosity. The ‘viscous’ fluid dynamic equations, known as the Navier-Stokes equations,
were later deduced by Navier (1827), Poisson (1831), Saint-Venant (1843), and Stokes
(1845).

As with any other branch of physics, it was through a combination of experimental
observations and theoretical reasoning that the principal concepts of fluid dynam-
ics (such as the continuum description of a moving fluid) were introduced, and the
equations of fluid motion were derived. One might presume that once the governing
equations became known, the analysis of various fluid flows could be conducted math-
ematically by solving these equations. This, of course, did not happen, since a direct
solution of the Navier—Stokes equations proved to be very difficult except for a limited
number of cases for which ezact solutions were possible; see Chapter 2. This difficulty
is a reflection of the fact that fluid flows are rather complex and also rich in their
diversity. Consequently, to achieve progress in understanding fluid flow behaviour, ap-
propriate simplification in the mathematical formulation of the problem reflecting the
physical nature of the flow being considered is required.

In order to demonstrate how this works, let us consider, as an example, the jet
that forms when a fluid such as water escapes from a large container through an
orifice equipped with a mouthpiece as shown in Figure [.1(a). We shall assume that
the mouthpiece is symmetric and composed of two flat plates, AB and A’B’, with
the container being on the left of A and A’. This flow was first studied by Helmholtz
(1868) with the aim of comparing it with the electrostatic field between two charged
plates; see Figure 1.1(b). The electric field potential ¢ is known to satisfy the Laplace
equation

Vip=0 (I1.1)
everywhere outside the plates AB and A’ B’. If the plates are good electrical conductors
(such as a metal), then the potential will be constant along each plate, which means
that equation (I.1) should be solved with the boundary conditions

0 on AB, .
L. {Q on A'B’. (t2)

Here the potential has arbitrarily been taken equal to zero on AB, and the difference
() in the potential between AB and A’ B’ depends on the electrical charge distribution
on the plates. The solution of the boundary-value problem (I.1), (1.2) is shown in
Figure I.1(b) in the form of equipotential lines.
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Let us now turn our attention to the fluid flow in Figure I.1(a). It is known that
in many flows the internal viscosity of the flow is very small. For example, in the jet
created with a teapot spout, the viscous forces are thousands of times smaller than
the pressure forces. We shall show in Chapter 3 that if the viscosity of the fluid is
disregarded, then one can investigate the flow by solving the Laplace equation

V2 =0 (1.3)

for the stream function 1. The main property of the stream function is that the lines
of constant 1) represent the trajectories of the fluid particles. Therefore, keeping in
mind that the fluid moves along the plates AB and A’B’, one can write the boundary

conditions for (1.3) as
b= {22 ZE 2% (L4)

with ) now representing the rate of fluid flux through the mouthpiece.

The two mathematical problems (I.1), (I.2) and (L.3), (I.4) are absolutely equiva-
lent. The solution of (I.1), (1.2) shown in Figure I.1(b) correctly models the physical
situation for an electric field between the two plates. A ‘mathematician’ could expect
the trajectories of the fluid particles in the jet (Figure I.1a) to coincide with the equipo-
tential lines in Figure 1.1(b). However, an ‘experimentalist’ and, in fact, anyone who
has observed how tea is served, would disagree. The observations clearly show that
the flow through a mouthpiece does not exhibit the pattern shown in Figure I1.1(b).
The fluid is never observed to turn around the edges of the flat plates at B and B’,

A A

B 4
Al A
(a) Streamlines in the incompressible fluid flow (b) Equipotential lines in the electrostatic field
through a mouthpiece composed of two flat between two flat plates AB and A’'B’.

plates AB and A'B’.

Fig. I.1: Comparison of the electrostatic field between two semi-infinite flat plates with
the corresponding fluid flow.
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and flow back over the external surfaces AB and A’B’. Instead, the flow separates at
points B and B’ to form a confined jet surrounded by the ambient air.

This dilemma led Helmholtz to a conjecture that, in addition to the smooth solution
shown in Figure I.1(b), the Laplace equation also allows for a solution where the fluid
velocity has a jump across the boundaries of the jet, BC' and B’C" (see Figure I.1a).
We shall discuss these types of solutions in Section 3.8. Helmholtz further argued that
it is the fluid viscosity that, despite being very small, is responsible for global changes
in the fluid motion.

In the history of fluid dynamics, there have been many episodes like these, when
the alliance of theory and experiment has led to novel concepts and ideas. About
fifty years ago, a new member of the alliance emerged, computational Huid dynamics
(CFD). It relies on numerical solution of the Navier-Stokes equations as a means
of studying the behaviour of fluid fows. At the beginning, some researchers called
this approach ‘numerical experimentation’, and speculated that it could become a
substitute for real experiments; the latter were known to be very expensive, especially
when large-scale wind tunnels were involved. There were others who believed that
with the development of CFD the role of theory would diminish. It is, of course, true
that over the years CFD has become a powerful tool. However, both experiments and
theory retain their importance. In particular, theory remains, and always will, an ideal
instrument for uncovering the fundamental physical processes behind observed fluid
flow behaviour. It also remains the preferred way of presenting the subject of fluid
dynamics to students.

In this book series we shall mainly rely on theoretical fluid dynamics, although
some elements of CFD will be introduced where this is useful for the presentation of
the material.



1
Fundamentals of Fluid Dynamics

1.1 The Continuum Hypothesis

Theoretical fluid dynamics is a subdivision of continuum mechanics and as such does
not attempt to describe either the molecular structure of a medium or the motion of
individual molecules.! The continuum models matter that is sufficiently dense such
that averaging over a very large number of molecules permits a meaningful definition
of macroscopic quantities. Of course, this approach has certain inherent restrictions,
and these may be expressed in terms of the Knudsen number.

Let us consider fluid flow past a rigid body, say a sphere as sketched in Figure 1.1,
and try to determine the density of the flowing matter. The density p is defined as
the ratio of the mass mp to the volume 7p contained in a region D inside the flow. If
there were no variation of density throughout the flow field then the region D could
be chosen arbitrarily. However, many fluids of practical interest are compressible
and undergo density changes as they move. For example, for the situation shown in

z

Fig. 1.1: Calculation of density p(r,¢) at point r and time ¢ in a fluid flow.

1t should be noted the Navier-Stokes equations governing fluid motion may be derived not only
using the continuum mechanics approach as described in this book, but also based on the Boltzmann
equation of the kinetic theory of gases, which treats fluid flow as the motion of an assemblage of
molecules.
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Figure 1.1, the fluid experiences deceleration near the front part of the sphere as it
approaches from upstream, resulting in a process of compression. As the fluid subse-
quently moves around the sphere, it undergoes acceleration and a process of expansion.
This is followed by a second compression occurring as the fluid decelerates near the
rear portion of the sphere. The characteristic length scale associated with these vari-
ations coincides with the diameter L of the sphere. Therefore, in order to define the
density, it is necessary to first choose an observation point in the flow. In Figure 1.1
this is denoted by the radius vector r. This point must then be surrounded by region
D, whose characteristic length scale ¢ is small compared with L. The density at point
r and time ¢ is then evaluated as

mp

plr.t) = (1.1.1)
Formula (1.1.1) becomes progressively more accurate as the region D is made smaller,
and a more precise definition of density should be written in the form

p(r,t) = lim =2 (1.1.2)
£—0 Tp
Thus the question of whether the concept of a continuum is useful in a particular How
becomes a question of whether the limit in equation (1.1.2) exists.

In general, the variations of mp /7p with decreasing { are quite complex, as shown
schematically in Figure 1.2. When ¢ is comparable to the body scale L, then mp/7p
is found to be dependent not only on the volume 7p, but also on the shape of region
D. If this region is stretched to the front of the cylinder (like region D’ shown by
the dashed line in Figure 1.1) then formula (1.1.1) will obviously overestimate the real
density at point r; if, on the other hand, it is stretched towards a region where the fluid
experiences an expansion (solid line in Figure 1.1) then (1.1.1) will underestimate the
density. This is illustrated in Figure 1.2, where the solid curve corresponds to region
D in Figure 1.1 while the dashed line corresponds to region D’.

mp

™ overlap region

7
Macroscopic
limit

A

¢

Fig. 1.2: Variations of mp /7p for different possible shapes of region D. Here the solid
and dashed lines represent the solid and dashed shapes of region D in Figure 1.1.
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For a fluid medium that is sufficiently dense, the apparent density as measured
with various shapes of region D converge to the same value as 7p shrinks to the
observation point r, thereby indicating the existence of the limit in equation (1.1.2).
However, this limit is only an intermediate macroscopic limit since a further decrease
in region D eventually reveals complex fluctuations in the apparent density, which are
associated with chaotic motions at the molecular level; by this stage 7p is so small
that any measurement of mp is strongly dependent on the number of molecules that
happen to be in D at instant ¢, and therefore the fluctuations are also time-dependent.
Oscillations, such as those depicted in Figure 1.2, would be recorded when ¢ becomes
small enough that it is comparable to the molecular mean free path, A. Here A is defined
as the average distance an individual molecule travels in a gas before colliding with
another molecule. Thus the macroscopic intermediate limit (see Figure 1.2) exists only
if 7 is small with respect to L, but at the same time large with respect to A, namely

ALk L. {1.1..3}

The density p(r,t) may also be defined from a microscopic point of view as follows.
If Np denotes the number of molecules contained at time ¢t within region D and my is
the average mass of an individual molecule then

moNp

plr,t) = (1.1.4)

™D
It is known from statistical thermodynamics that chaotic fluctuations in the appar-
ent value of p that can occur as molecules pass in and out of the measuring region
D do not influence the values of macroscopic quantities provided that the system
of molecules being considered is large enough. Thus formula (1.1.4) should be more

precisely written as

oV
p(r,t) = lim Lo (1.1.5}
Np—co ™D

The process indicated in equation (1.1.5) is called the microscopic limit and again
must be interpreted as an intermediate one. It should be noted here that the notation
‘Np — o’ does not actually imply that Np, and therefore the region D, must become
indefinitely large. To avoid performing an average for the density over a region whose
size £ is comparable to the body scale L, the restriction £ < L must still be observed.

Formulae (1.1.2) and (1.1.5) give the same result in the so-called overlap region
(see Figure 1.2) where both restrictions in (1.1.3) are observed.? The Knudsen number
is defined by

Kn= —,
Kn 7

and it immediately follows from (1.1.3) that Kn must be small compared with unity.
Alternatively, if Kn < 1 then any point in the flow may be surrounded by a small
region whose characteristic length scale ¢ satisfies the conditions (1.1.3). Being con-
sidered as a material fragment of the moving medium, such a region represents the

2For a detailed discussion of the notion of overlap region, the reader is referred to Part 2 of this
book series.
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basic notion of the continuum description of fluid flows, the notion of a fluid particle.

Definition 1.1 The flutd particle is an elementary part of the moving fluid that
possesses all the macroscopic properties of the fluid; it should be regarded as small
enough that variations of macroscopic quantities over its volume may be neglected but,
at the same time, large enough that microscopic variations are not important.

In the continuum mechanical description of fluid motion, the entire flow field is
envisaged as being continuously filled with fluid particles; in addition all quantities
describing the dynamic and thermodynamic characteristics of the fluid particles, such
as the velocity vector V(r,t), pressure p(r,t), density p(r,t), temperature 7'(r,t),
ete., are considered to be continuous and smooth functions of the spatial coordinates
T2 2}

1.2 Forces Acting on a Fluid

All the forces acting on a moving fluid may be subdivided into two classes: body forces
and surface forces. A typical representative of a body force is the force due to gravity.
Recall that any material body of mass m placed in the Earth’s gravitational field
experiences a force

F =mg,

where g is the gravitational acceleration vector directed vertically downwards. Near
the Earth’s surface, |g| = 9.8 ms™2.

In fluid dynamics, one deals with a mass continuously distributed in space, and
so it is convenient to express the body force F through its density distribution vector
f(r,t). The latter is defined as a body force per unit mass and may be calculated via
the limit

-
f(r,t) = lim —, (1.2.1)
=0 mp
where Fp is the force acting on the fluid contained in a small region D whose char-
acteristic length scale is denoted, as before, by ¢, with the mass of the fluid inside D
being mp. Since mp = p7p, we can also write

1 F
f(r,t) = lim Fo == lim —Z. (1.2:2
=0 pTp p =0 Tp

As the body forces act on volume elements of a fluid, they are also referred to as
volume forces. For the gravitational force, the vector f(r,t) is simply

f(r,t)=g.

Other volume forces of interest in fluid dynamics are inertial forces and electro-
magnetic forces. An example of an inertial force is the Coriolis force. This should be
taken into account when a fluid motion is considered in a rotating coordinate system,
which is convenient, for example, for flow analysis through compressor and turbine
blades inside a jet engine. For a fluid motion considered in a coordinate system Oxyz
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that rotates with constant angular velocity €2 around axis OO’ passing through the
coordinate origin O, the inertial force is calculated as

f=(2xr)xQ+2(VxQ).

Electromagnetic forces need to be considered when an electrically conducting fluid
is moving in a magnetic field. The branch of fluid dynamics that deals with such flows
is called magnetohydrodynamics. The interaction of an electric current in a fluid flow
with a magnetic field results in a volume force known as the Lorentz force,

1
f=— (1% B).
p(J )

Here the vectors j and B are the electric current density and the magnetic field,
respectively.

1.2.1 Surface forces

In the other group are the surface forces, such as the pressure and internal viscosity.
They play a most important role in fluid flows, representing the means by which
the fluid particles ‘communicate’ with one another. The importance of the pressure
forces in a moving fluid was first recognised by Euler (1755), who not only derived
the differential equations for inviscid fluid motion, known as the Euler equations, but
also put forward a new non-collision concept of flow over a rigid body. In the earlier
so-called ‘Newtonian model’, it was supposed that all fluid particles move towards a
body along straight trajectories and exert a force on the body by simple collision with
the body surface (see Figure 1.3a). Meanwhile, in reality, the interaction of a fluid flow
with a rigid body always leads to a pressure increase in front of the body, making the
fluid particles deviate from straight-line motion and adjust their trajectories in such
a way that they smoothly flow around the body surface as shown in Figure 1.3(b).
The surface forces have a direct molecular origin and are produced by the inter-
action of molecules with each other via the mutual forces of attraction and repul-
sion. Most simply, the process of the interaction may be accounted for in gases. Gas

(a) Interaction of fluid particles with a (b) Visualization of cylinder flow at Re = 26 by
rigid body surface according to the ‘New- S. Taneda (see Van Dyke, 1982, p. 28).
tonian model’.

Fig. 1.3: Comparison of the ‘Newtonian model” with a real flow past a circular cylinder.



