


3902

o ok 3R &

T M
BERRES L RAHEIBEAHES

W % B ﬁ)ﬁﬁ
a8 % - A



BETLREFXE
T OAt
RS IOR
HREBUTER

CHE N
Chm T RS a6 )
B O L R R TR R 1
B AW BT RR

787 x 1082 oK .z GHAHE 135 b FE
e E S ABLIE 1879 & 8 F#LNT 1 2518
B¥, |—gl, 00
ML B, 9007 - 250 Aty 0.8



50,
51,
52
53

CONTENTS

Comparative Rate of Functions and Inde-
pendent Variables ....covvvveraraniencncinrieconsmacarsarean 1
Derivatives .cuurieinrinnrriioriireinincnarnnnas cervenenisnn 4

. Newton’s Integrals and Riemann’s Integrals ......... 7

Differential Equation .................. vreerreenrrecnreneae 13
The Orthogonal Trajectories ......ccoveveeeveriaricnnnsnn.17
Variations ({ ) coooviiiiinrricicireiicircennar e renann 0 22
VAFIALIONS (1) vovviniiniiiaiiiniieaiiniinsiasorenvannre s 27
Variations (ffl ) vooevrieine i i e v e e 31
The Distribution of Prime Numbers .....................36
Comments on the Zeta Function .......coeviirinnen..d3
Fermat's EQUatiOn  .ocoovoeovvurnniiiinrsrrrnrcnnnreen @7
Constructions by Ruler and Compass .......cc.enn0 .52
Number {T) coiciiiiciiici i i ceric i e e e e 0 3T
Number (I1) cooveiii i it cer v rtnrersnsnaramrerannsaa 81
Sets, Systems, and Groups ......ovorvevrviiincnenininrans 63
Concepts of Sets (T} corvriiiiiiiic v e aes 67
Concepts 0f Sets (T1) o veieiivmnnrvnrr e crnennaee e 72
On Cantor’s Definition ol Sef ....oovii il 76
The Upper and F.ower Boundaries of a Linzar

Set of Points . TP .3 |
Bounded Set and Unbounded Sef, IOUTCTOTURRRE . |
Denumerable Sets (I )... 8?
Denumerable Seis (1 )eeeiiviiiniiiiiiiiiinininianan,, 91
The Continuum of Real Numbers (I) ............... 95

34839 !

- vk ¢ S A T W SIS F - et amn - R



54.
55,
56.
7.
38.
39,
60.

The Continuum of Real Numbers (I[}.voeiiieninenn
The Concept of Cardinal Number (I)........c......

.98

101
The Concept of Cardinal Number (4} ...............105
Definition of Order ......vcviviiiceeniiecniieninrainenrnn 110
Property of Order-Relation .........ccovvvvviiimiininnen 113
Ordered Sets (1) .ucverinnmmreiiimminrinninaenn 117
Ordered Sets (I} coivveiiiiiimimcviricrreeriranninasnneeess 120



31. COMPARATIVE RATE OF
FUNCTIONS AND INDEPEND-
ENT VARIABLES

It is the primary object of the Differential Calculus
to obtain a measure of the rate of increase of the func-
tion as compared with that of the independent variable.@
For this purpose, we let Ax denote an increment in the
value of x, so that x and x+Ax arc two values of the
independent variable. Let Ay denote the movement in y
consequent upen the increase of x to x+Ax. Then v+Ay
15 the new value of the function; that is to say, it is
the same function for x+4+Ax that y is of x.© We shall
first consider the ratio of the two increments Ay and Ax.

To begin with the simplest function, let

y=mx+-b, (n
where m and b are constants. The graph of this function
is a siraight Jine, and the function is hence called the
linear funciion. If x be increased by Ax, the new value
of ¥ will be

y+Ay=m(x+Ax)+b 3]
Subtracting equation (I}, we find
Ay=mdx;
whence

Thus the ratic between the corresponding increments of
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and x is, in this case, constant.

There are two things implied in this statement: first,
that no matter how large x is takem, the ratio is un-
changsd, secondly, no matter whereon the line we take
the point P, the ratio remains the same.

In this case, the ratioc Ay: Ax . is the measure of refa-

. . ] 1 .
tive rates of increase of y and x. Thus, if m=-, y io-

creases half as fast as x,; if m==2, it increases twice as
fast as x; if m==—1, it decreases with the rate with which
x increases. If @ denotes the angle the line makes with
the axis of x, m=tan @. [n the graph, tan @ is taken as
the gradient or measure of the slope of the ling, this slope
being constant in the case of the straight line.

et us next apply a similar process to the function
y=x2 When x 8 increased to x +Ax, the function
becomes

Y+AY=(x4Ax)}=x2+ 2xAx+(Ax); 4]

whence Ay=2xAx-4-(Ax)?, 2)
A

and AE=2x+Ax. 3)

The ratio of the iwo increments is mo longer con-
stant. This is obviously d}le to the fact that® the graph
is not a straight line, and that in consequence the relation
rate of increase of y is mot constant; in other words, if
x increases uniformly, y will not increase uniformly. We
should therefore expect the measure of y's rate to contain
x. Now the ratio equation in (3) is the slepe of the straight
line passing through P and P*, which, with reference
to the curve, we call a secant linme. The slope of this se-
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cant is not an exact measure of the relative rate of in-
ctzase in p at the point P, because it depends also upor the
point P’. The ratio of increments Ay: Ax in fact depends
not only upon the rate of y at P, but upon all the va-
rious values of the rate while the moving point goes from
P to P'. Tt may be taken as the measure of the average
rate for the whole interval of this motien, but it is not
the measure of the rate (at the instant) when the point
is'at P.

This obviously applies whenever the graph is a corve.
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32. DERIVATIVES

The Meusure of the Relative Rate

To find the proper measure of the relative rate of
y at the point P, we observe that, if P’ were taken nearer
to P, the slops of PP’ would wmeasure the average rate of
y for a smaller interval, and thus come nearer to being®
the measure of the rate at P. Moreover, if P’ approaches
P indefinitely and finally coincides with it, the secant line
becomes a tangent line, and its slope then depends upon
no value of the rate execept that at P. The slope of the
tangent line is therefore the proper measure of the rate
at P, defining the expression slope of the curve at a point
to mean stope of the tangznt line at the point, this is
expressed as follows: the measure of the relative rate of
» compared with x is the slope of the graph of the fune-
tion at the point representing the values of y and x in
question,

The tangent is often called the limiting pesition of
the secant line, but it is an actual position of the line; it
is only limiting because the line ceases for a moment to
be properly called a sccant (since a secant is defined as
line passing through two points of the curve). It fs some-
times called a secant passing through two consecutive
points of the curve, or through {wo coincident points of
the curve, the latter phrase implying, of course, that the
two poiats have come into coincidence by motion along
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the curve.

The Derivative

The analytical meaning of the statement above is that,
when y and x diminish together, their ratio tends to a
limiting value which i5 perfectly definite quantity; this value
is reached jusf as the terms of the ratio vanish, and it is
the measure of the relative rate of y and x, It is called
limiting ratio because the ratio then ceases to be a frac-
tion whose value could be obtained by finding how many
times the numerator contains the denominator. For rzasons
which will be explained further on, the value of this limit

is denoted by %— Thus, deﬁning—:% as the measure of

the relative rate of ¥, we may write:

- Ay dy
Limit, when A x—0, o A= e

This is alse frequently expressed by the equation
Ay dy
Ax~dx T5
where it is understood that & is a quantity which vanished
with Ax.

The value of % depending, as it does,®@ upon x
(when y is any function of x except the linear}, is a new
function of x, which is called the derivative of the given
function, Thus, from equation (3} we derive, by making
A x-=»0,

d
&=
hence 2x is the derivative of the function x2

|+ fE—— o — s mi o e




It follows that a positive value of the derivative in-
dicates an increasing function, and a negative value, a de-

creasing function,
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33, NEWTON'S INTEGRALS AND
RIEMANN’S INTEGRALS

Areas, and the Differential aud
Iategral Calculns

In the simplest case the process of integration is the
adding together of areas of nom-overlapping elementary
figures, and then the taking® of some kind of a limit.
The Greeks computed many simple areas, the methods
being systematized through the years, and cnlminating in
the method of exhaustions of Eudoxus (¢, 408-355 B.C.)
and Archimedes (c. 287-212 B.C.). This method was (he
first ¢rude limit process, and they used the geometry of
the figures to At a sequence of non-overlapping triangles
inside each main figure that finally exhausis the arca. By
this means they found the areas of Lhe circle and sections
of parabolas, for example, but could not define a general
non-nggaiive polynomial, and so could net compuie the
arca under its curve.

The second approach to inlegraiion lies in inverting
the result of differeatiating a known function, The opera-
tion of differentiation was first systematized by I Newlon
(1642—1727) and G.W, Leibnitz (1646--1716). To each
ol a certain ¢lass of functions § for which thz derivative
Df =df ;d« exists, say, for x in e<{x<h, we make cor-
respond that derivative,’® so that we can regard D as an
operator. It obeys the following rutes. If f,g are differen-
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tiable functions of x in a<x<&, and if «,8 are constants,
then in g< x<.h we have:

Daf +Bg)=aDf+ BDg (1.1}
D(fg)=(Df)g+ f(Dg) (1.2)
D{f(g(GN}=(df /dg)Dg (1.3)
Da= (1.4)

The rule for division is obtained from (1.2); if f=h/g
then,
Dh=(Df)g+ /(Dg)
D(h/g)=Df ={Dh—(h/g\Dg}/g

A function H of points x is an indefinite Newton
integral of a kmown finite function f in a<{x<<h, if
DH=f in that interval. The functions that Newton inte-
grated are all continuous, but we can ignore that limita-
tion. Then the definite Newton integral in es(x<(b is
H{—H(a). We can wriie H as:

H=D1f =L\ fax. H®)— H@~ND) Sj,fdx

where NL stands for Newton-Leibnitz. This definition of
the integral is descriptive. No method of coastruction is
offered, but we are given its properties so that we can
recogitize it if it is produced in another way. Because of
this we have to prove that if  and £, are both inde-
finite Newion integrals of the same function f in a<{x<b,
then:

H(b)— H(ay= H,(b)— H () (1.5)
To prove ([.5) we note that by (1.1)

Dilf—H\)=f—f=0

so that in particular H— A, is continuous, and then the
mean value theorem gives (1.5).

]
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From (1.1) we obtain the distributivity of the Newton
integral, namely,
DYaf +Bgy=aD"1f +BD-ig (1.6)
From (1.2; 1.6) we have the formula for integration by
parts,
D-1(gDf)+DHfDg)= fg

(NL)J(fg)dx fa #(NL)I(gdf x (1.7)

From (1.3) we have

d,
@D =D [ a

and replacing df/dg by 1,
[ i@yg= VD) [ 110 Gt (1.9

the formula for integration by substitution.

When we have defined more general integrals we will
see that the formulae (1.5; 1.6; 1.7; L.8) are in some
sznse still true for them.

The integration of a polynomial in x is now easy, but
some simple functions cannot be integrated. It can be
proved that if DH exists in a<(x<(b, and if v is a nom-
ber between H'(g) and H'(b), then there is a & in a<(f<h
such that H'(£)=-y. It follows that if f is zero for x less
than 4 (a+5), and is | otherwise, then / does not have
1 Newton integral in a<{x<h.

Riemann, Riemann-Stieltjes and
Burkill Integration

G.F.B.Riemann {1826—66} gave the following defini-
tion of the definite integra! of a function f in a<<x<(h

p



Let

@=XysX <= <X, =h (2.1)
be 2 division of a<{x< b into smaller intervais, lel £; be
a point of the imterval x;_,<x<x;, and consider the sum

5= D€ (x;=x;,) (2.2)

=1
The number 7 is the definite Riemann integral of f in

ascxs.h, if to each e>=0 there is a 6=>0 such that
|S—1 | <e 2.3

whenever

X, b <x, <x; 48 (=121 (2.4)
3.G. Darboux (1842—1917) nude the {ollowing modi-
fication when f s real. He replaced f (5,) by the supre-
wium (least upper bound) o f in x;_,=iv<ix,, und ob-
cained an upper sum. For a Jower sum he replaced f (£}
by the infimum (greatcst lower bound) of f in »,_,<¥<x;.
If f is non-negative, with a given graph, and if we take
a division (2.1} of @a<\x<Ch, then the upper Darboux sum
is the sum of the arcas of rectangles wilh bases the in-
tervals x;_, =cx<{x;, and with just sufficient height to
melede the graph. The lower Darboux sum is the sum of
the areas of rectangles with the same bases, but lying just
below the graph. When f is real it is clear that for
suitable choice of the £,, the § of (2.2) can be taken
arbitrarily near to the upper sum, and for another choice,
arbitrarily near to the lower sum, so that the Darboux
modification does not alter the Riemann integral of a real
function. Thus if a real function has a Riemann integrai
m a<x<.h it must be bounded there, From this we can

10
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show that not every NeWton integial is”a Rizmann inte-
gral. For

H(x}=x*.sin{1/x*)(x+0), HO)=0 (2.5)
is differentiable everywhere, the derivative being unbounded
in the neighbourhood of x=0. However, not every Rie-
mann integral is a Newion integral, for the Riemann in-
tegral of the last [unction of section 2 cxists in as{x<(b,
and is equal to 3(b—a). There is a common region, for
the Riemann and Newton integrals of a continuous func-
tion exist and are equal. The Ricmann integral cannot
integrate every bounded function, for jf

1(x rational)

f(x)= (2.6)

O(x irrational}
then any upper Darboux sum is & —a, while any lower Dar-
boux sum is 0, Thus / does not have a Riemann integral
(nor a Newton integral),’®
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