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Preface

The field of microelectromechanical systems (MEMS) has greatly expanded in recent years
since Richard Feyman’s speech — ‘there is plenty of room at the bottom” — opened the minds
of researchers and companies to the possibility of exploring the potential of microstructures
of minute dimensions.

The need for skilled professionals has steadily grown as businesses and research labs engage
in challenging projects. Students are motivated because they are aware that they have, in their
phones, watches or tablets, accelerometers, compasses and sensors and useful applications
relying on them. Students see in the MEMS field, job opportunities and exciting career
prospects.

Ultimately those devices have to work together with front-end electronics and digital pro-
cessing to interface with the user. Students in electrical engineering and computer science
departments in universities around the world are probably the most exposed to the field.
Simultaneously, engineers and professionals working in the electronics and semiconductor
industry face the challenge of integrating MEMS devices into chips, systems on chips or,
broadly speaking, into electronic systems. The added value of those devices enables the
expansion of high tech businesses.

In my experience of teaching MEMS in an electronic engineering department to engineering
students from many countries I have faced the difficulty of selecting material for one-semester
course and having to decide on the depth and breadth of the subjects covered.

The field is inherently multidisciplinary, and if the basics are not sufficiently covered,
students will not achieve the intellectual satisfaction of a full understanding. However, if the
coverage is too complex it cannot be extended to the various fundamental domains underlying
the field. Solving problems is an important part of the learning process as it allows for concepts
to be reviewed.

Those are the reasons why I have chosen to approach the subject using analytical solutions
as far as possible, but with the help of two software tools: one very popular among science
and engineering students, Matlab; and the other, very popular among electrical engineering
students, PSpice. I have used Matlab to solve ordinary differential equations subject to bound-
ary or initial conditions, applied to mechanical, electromechanical, electrokinetic and thermal
problems. This allows numerical results to be found quickly which can then be discussed and
put into context.

I have used PSpice to solve Laplace transforms of transfer functions and to solve electrical
equivalent circuits of lumped thermal problems. Apart from the clarity of analytical solutions,
this approach places the subject of MEMS in the same tool environment as other subjects the



Xiv Preface

student will already have taken. Commonality of tools is important at this level of the learning
process, because it means that students do not have to spend a significant amount of time
learning how to use new software.

The book includes 52 worked examples in the text and 100 solved problems in the appen-
dices, organized by chapters. In my view this allows this textbook to be used not only as support
material for a conventional course but also as a self-study resource for distance learning. I am
very greatful to faculty colleagues, researchers and students with whom I have interacted all
these years that have taken me to complete this book.

Luis Castafer
April 2015
Barcelona, Spain
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1

Scaling of Forces

There are a number of important forces in the field of microelectromechanical systems
(MEMS). However, their relative importance does not necessarily match the importance
they have in the macroworld. This chapter is concerned with the scaling of these forces to
small dimensions. Weight, elastic, electrostatic, capillary, piezoelectric, magnetic and dielec-
trophoretic forces are examined and a scaling factor identified for all of them.

1.1 Scaling of Forces Model

The integration of complex and powerful systems in silicon for a large variety of applications
stems from the miniaturization of electronic devices and components. Electromechanical
components that were bulky, heavy and inefficient can now be miniaturized using MEMS
technology. Here, mechanical moving parts are used both for sensing devices and actuators.
The main forces present in the operation of these components depend on the geometrical
dimensions, and thereby, when the dimensions are scaled down, the magnitudes of these
forces change, creating a different scenario compared to the macroworld.

Given a force F that depends on a number of geometrical dimensions g; and on a number
of parameters y;, we have

F=F(ai,yj'). (1.1)
When all dimensions are scaled by the same factor a, the force changes to
F, = F(aa;, 7)), (1.2)

provided all the parameters y; do not depend on the geometrical dimensions. The ratio of the
forces before and after the dimension scaling is given by

F, Flaa;,y) (13)

Understanding MEMS: Principles and Applications, First Edition. Luis Castafier.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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2 Understanding MEMS

Generally, when analytical models are used in simplified cases, the result of equation (1.3)
provides a direct relation to a power n of the scaling factor a,

ull: QU (1.4)

meaning that when the dimensions are scaled down by a factor a, the force scales down by a
factor a”.

1.2 Weight

As our first application of the rule provided by equation (1.3) we consider the scaling of
weight. Imagine that we have a body of length L, width W and thickness ¢. The weight of this
body is given by

F=p,glLWt, (1.5)

where p,, is the material density and g the acceleration due to gravity. If all dimensions are
scaled by a factor «, the length becomes aL, the width becomes aW and the thickness becomes
at, and so the scaled weight is

F,=p,galaWat = o> p,,gLWt, (1.6)

and the ratio of forces after and before scaling is given by

=y, (1.7)

Equation (1.7) tells us that the weight scales down as the third power of the scaling factor,
so if we reduce all dimensions by a factor of 10 (@ = 0.1), the weight is multiplied by a factor
of & = 0.001).

It will become clear in the next sections that when electromechanical structures are minia-

turized, the weight loses the importance it has in the macroworld and other forces become the
main players.

1.2.1 Example: MEMS Accelerometer

A MEMS accelerometer has an inertial mass made up of a plate of silicon bulk material
of 500 um side and 500 um thickness. Calculate the force developed when subject to an
acceleration ten times that due to gravity.
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Taking into account that the density of silicon is 2329 kg/m® and that the volume is
500 x 500 x 500 x 108 m3, the force is given by

F=285x10"N.

If all dimensions are reduced by a factor of 10 (a = 0.1) the weight reduces to F, = 2.85 X
1078 N.

1.3 Elastic Force

A body is deformed when it is subject to an external force. In equilibrium, the elastic force
is the restoring force that compensates the external force. If the deformation is elastic, the
initial dimensions of the body are recovered after the external force disappears. In a one-
dimensional geometry and according to Hooke’s law [1], the elastic force, F, is proportional
to the deformation length 6, collinear with the force,

F =k, (1.8)

where k is the stiffness constant that is not independent of the geometry as will be shown in
Chapter 3; for example, for a cantilever of rectangular cross-section with length L, width W
and thickness ¢, subject to a force applied at the tip (see Figure 1.1), the stiffness is given by

EW?
k=——, 19
413 WL
where E is Young’s elasticity modulus. We now proceed as in Section 1.1 and calculate the
forces F and F, before and after scaling:

EW? EaWa’s L EWE
F=—256, =—uad= o. 1.10
a3 “ = 40303 VYE ks
The ratio between these two quantities is therefore
F, ’
— =a. 1.11
i (1.11)

yd
g =2y

L F

Figure 1.1 Geometry of a cantilever loaded at the tip



4 Understanding MEMS

1.3.1 Example: AFM Cantilever
In atomic force microscopy tiny cantilevers with a very sharp tip are used to detect the force.
The cantilever acts as a soft spring. Calculate the force that will deflect the cantilever by 1 um
for L=200um, W=5Sumand h =2 pm.
By equation (1.9), kK = 0.081 N/m, and by equation (1.8),
F=81x1078N.

Applying a dimension scaling with @ = 0.1, the force reduces to F, = 8.1 x 10710 N,

1.4 Electrostatic Force

The electrostatic force between two plates is due to the electric field, E, that builds up when an
electric potential V is applied between them.! This is a very common way to make mechanical
parts move in today’s microelectromechanical devices.

If we consider one of the two plates charged with a charge density o, as shown in Fig-
ure 1.2(a), Gauss’s law [2] allows to calculate the electric field created by the charged sheet as

%T)’FS’:/MS:Q. (1.12)

Signs in equation (1.12) are taken as positive for an electric field directed outward from the
differential volume, and dS is taken positive also directed outward from the face. As the

electric field is normal to the charged surface, only integrals extending over the top and bottom
surfaces of the volume are different from zero, so that

/ eEdS+/ €EdS = Q, (1.13)
top bottom

€EA + ¢EA = Q, (1.14)

where A is the area of the surface. Then

Q

The Coulomb force that such a field exerts on the parallel plate with a charge of —Q and at a
distance g is

2
F=—QE=-2 (1.16)

! We denote the electric field by E to distinguish it from the Young’s modulus E.

1.2.1 Example: MEMS Accelerometer

A MEMS accelerometer has an inertial mass made up of a plate of silicon bulk materinl
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~
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1
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Ny 4 N
' .
\
Q

(b)

Figure 1.2 (a) Gauss’s law for a sheet of charge o, and (b) electric field and Coulomb force exerted on
the upper plate

Since Q = CV and C =€A/g,

2
F= e;“; . (1.17)
g

As can be seen the force is downwards, that is to say, it is attractive between the plates and
does not depend on the sign of the applied voltage as it is squared in the force equation (1.17).
When we apply the scaling method we find that

(1.18)

In equation (1.18), A is the area of the plates which scales as a2, and g is the value of the gap
between plates. The scaling factor of the force is

(1.19)

This is a very important result showing that the electrostatic force is independent of the scaling
factor and can be very high compared to other forces in the microworld. However, it can be
correctly argued that reducing the distance between plates increases the electric field and the
devices may be damaged by breakdown. To prevent this situation, we can consider a different
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scaling scenario in which the value of the electric field is kept constant. As the electric field is
E = V/g, equation (1.18) can be written as

_ eAV? _ eAE’g?  cAE? p o €AC’E? (1.20)
F=e =g ~ 2 *T 72 '
and hence
% =a’. (1.21)

Here we see that in this scenario the scaling follows an & rule instead.

1.4.1 Example: MEMS RF Switch

In a MEMS RF switch two metal plates 250 x 250 um? are driven by a voltage of 9 V. Calculate
the force required to close the 5 um gap between them.

If we suppose that between the two plates there is air, the permittivity is e = 8.85 X 10712
F/m, and the force can be calculated from equation (1.18):

_ €AV? 8.85 x 10-12230 % 1076 x 250 x 1076 x 92

F
2g2 2%x52x10-12

=896x 1077 N.

If the dimensions are scaled by a factor of @ = 0.1 the force remains equal if equation (1.19)
applies or 8.96 x 10~ N if equation (1.21) applies.

1.5 Capillary Force

On the surface of a liquid the molecules are attracted by the other molecules inside the volume
but do not have the attraction from the surroundings above the surface. This creates a situation
where the molecules rearrange in order to expose the minimum surface. If an observer wants
to increase the surface exposed to the ambient, he necessarily has to do some work. This work,
dW, is proportional to the increase in area, dA [3]:

dW = ydA. (1.22)

The proportionality constant y is the surface tension and has units of J/m? or, equivalently,
N/m. Thus the surface tension is a measure of the surface energy per unit area.

When a liquid drop is in equilibrium, there is a pressure increase AP inside the drop, known
as Laplace pressure, to prevent collapse. AP is related to the surface tension by

AP =yC, (1.23)

E=—. (1.15)



