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Preface

This book concerns index theory for linear Hamiltonian systems and multiple solu-
tions for asymptotically linear Hamiltonian systems, as well as some related prob-
lems. There are two excellent books on Hamiltonian systems: Convezity Methods in
Hamiltonian Mechanics by 1. Ekeland and Index Theory for Symplectic Paths with
Applications by Y. Long. Periodic solutions are the main topics in those books,
whereas non-periodic solutions will be investigated in most parts of this book. Most
contents are from my own research works during the past twenty years and I will
try to write this book following the style of the famous book Minimaz Methods in
Critical Point Theory with Applications to Differential Equations by Paul H. Ra-
binowitz. An overview is given of the subject matter in Chapter 1 and a detailed
study is carried out in the Chapters that follow.

I began to study the existence of solutions for Duffing equations(the simplest
case of Hamiltonian systems) in 1988 following Prof. Qinde Zhou(who passed away
in 1998 and left an excellent textbook[Zho]) at Jilin University and learnt index
theory for symplectic paths with applications from Prof. Yiming Long during the
period from 2000 to 2002 at Nankai University. Dr.s Yucheng Bu and Yingying
Chen have read some parts of the book and found some errors. Editors Yanchao
Zhao and Jingke Li have done a lot for publishing this book. NSFC(No.11171157)
and PAPD (A Project Funded by the Priority Academic Program Development of
Jiangsu Higher Education Institutions) support my writing and publishing the book.

Yujun Dong
Nanjing
Aug. 2014
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Chapter 1

An Overview

A focus of this book is the existence of solutions of Hamiltonian systems satisfying
some boundary value conditions. It is well-known that any ODE (ordinary differen-
tial equation) satisfying an initial value condition has at least one solution provided
the related function is continuous, e.g. if G C R" is open and f: (0,1) x G — R"
is continuous, then the initial value problem

z' = f(t,z),

z(to) = zo

has at least one solution for any ¢, € (0,1),z0 € G. However boundary value
problems are quite different. As an example consider

" + Az = e(t), (1.0.1)
z(0) = 0= z(1). (1.0.2)

(1.0.1)—(1.0.2) has no solutions if A = k?n?,e = sinknt,k € N* = {1,2,3,---}. But
the problem has a unique solution if A # k2n? and e € C[0,1]. A general version of
(1.0.1) is the equation

" + h(t,z)z = e(t, ), (1.0.3)

where h,e : [0,1] x R — R are continuous, h(t,z) is bounded and

(h1) k®n% 4+ 6 < h(t,z) < (k+ 1)2n% -4, (t,z) € [0,1] x R.

A basic result is as follows.

Theorem 1.0.1 Suppose h satisfies (h1) for some k € N* and § > 0. Then
(1.0.2)-(1.0.3) has at least one solution.

This result is due to Lazer-Leach(LL) and is called the Lazer-Leach theorem. Its
generalizations will be investigated in Chapters 2—8. In order to improve this result
for (1.0.2)—(1.0.3) consider a classification problem for the equations’

" +q(t)z =0, te(0,1), (1.0.4)

where ¢ € L*[0, 1].
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Definition 1.0.1 We define Hy = {g € L*°[0, 1]|the problem (1.0.4), (1.0.2)
has one nontrivial solution with exactly k zeros on (0,1)} for k € N = {0,1,2,---}.
Note that k?n? € Hy—y for k € N* and R\{k?n?}, = (—o0,n?) U(n?, 4n%) |

oo oo
(4n2,9n2)|J---. Similarly L [0, 1]\ U H; = U Fy, where F}, is path-connected
k=0 k=0
and (oo,n%) C Fy, (k*n?, (k + 1)2n?) C Fy, k € N*. This will be made precise in
Section 2.2 by the so-called Prufer transformation and the Prufer equation as well
as related results.

With this definition in hand the Lazer-Leach theorem has a generalized version.

Theorem 1.0.2 Suppose that there exist g; € H;,j = k,k+1 for some k € N
and € > 0 such that

(h2) ar(t) +e < h(t,z) <gr+1(t) — e, z€R, ae. t€[0,1].

Then (1.0.2)—(1.0.3) has at least one solution.

Definition 1.0.1 and Theorem 1.0.2 are from Dong[Dol]. These results and the
definition of Fj,k € N will be generalized to asymptotically positive linear Duffing
equations in Chapter 3, to one-dimensional p-Laplacian equations in Chapter 4, to
second order Hamiltonian systems in Chapter 5, to first order Hamiltonian systems in
Chapter 6, and to operator equations in Chapters 7 and 8. Chapters 3 and 4 concern
classification theories for positive linear systems or homogenous systems where the
Prufer transformation will be used. However Chapters 5-8 concern index theories(i.e.
classification theories) for linear systems where the Prufer transformation canot be
used. To be more precise, consider the problem

" + B(t)z =0, (1.0.5)
2(0) = 0 = z(1), (1.0.6)

where B € L*([0,1], Ls(R™)) and as in Long[Lo4], L;(R"™) denotes the subspace of
symmetric matrices in R™ with the induced norm in R™".
Definition 1.0.2 We define

v(B) = the dimension of the solution subspace of (1.0.5)—(1.0.6),
i(B) =Y _v(B+ A,).

A<0
It is easy to check that b € H, (R if and only if (v(b), (b)) = (1,k) and b € Fx R
if and only if (v(b),i(b)) = (0, k). Part of this book concerns multiple solutions for
Hamiltonian systems. (i(B),v(B)) was defined by Dong[Do4| motivated by Williom-
Mawhin[WM], Ekeland[E] and Long[Lo2 and Lo3] which will be used to investigate
multiple solutions for the problem
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& + V' (t,2) = 0, (1.0.7)
2(0) = 0 = z(1),

where V € C*([0,1] x R™) and V’(t,z) denotes the gradient of V (¢, z) with respect
to x.

Theorem 1.0.3 Assume that (i) V € C?([0, 1] x R™) and there exist By, By €
L>=([0, 1], Ls(R™)) satisfying i(B1) = i(B2), v(B2) = 0 and

Bi(t) < V"(t,z) < Ba(t), V(t,z)€[0,1] x R*™ with |z| >r >0,

(ii) V'(t,0) =0, v(Bp) = 0, where By(t) = V" (t,0) and |¢(B1) — i(Bg)| = n.

Then (1.0.6)—(1.0.7) has two nontrivial solutions.

Theorem 1.0.4 Assume that (i) V € C?([0, 1] x R™) and there exist By, By €
L*>=([0, 1], Ls(R™)) satisfying i(B;) = i(B2), v(B2) = 0 and

Bi(t) < V"(t,z) < Ba(t), V(t,z)€[0,1] x R*™ with |z| > r >0,

(ii) V'(t,0) = 0, v(By) = 0 where By(t) = V"(t,0), and

(iii) V(t,—z) = V (¢, ) for all (t,z) € [0,1] x R™.

Then (1.0.6)—(1.0.7) has at least |i(B1)—i(Bo)| distinct pairs of nonzero solutions.

These theorems will be proved by Morse theory[Ch2] and Ljusternik-Schnirelman
theory[Ch3] in Chapter 5.

The following first order linear Hamiltonian system is a generalized form of
(1.0.5):

~Ji—B(t)z=0, te(0,1), (1.0.8)
z(0) =0 =z(1),
0 -I, . . . ..
where J = ( I 0 ) , In, is the identity matrix in R", z = (z,y),z,y € R"

and B € L*([0, 1], L;(R?™)). Here for simplicity we denote (zT,yT)T by (z,y) for

z,y € R™ and =7 denotes the transpose of z. In fact, let 2 = (z, —i); then (1.0.5)

is equivalent to (1.0.8) with B replaced by diag{B,I,}. The index (i(B),v(B))

concerning (1.0.5)—(1.0.6) can be generalized to the system (1.0.6) and (1.0.8).
Definition 1.0.3 For any A € R we define

if (May,) = nE [3] :
n
where as in Ekeland[E], E[a] is the integer a such that a < a < a + 1; and for any
B € L>™([0,1], £Ls;(R?™)) we define

v/ (B) = the dimension of the solution subspace of the system (1.0.6) and (1.0.8),

if(B)= Y v/(AB+ (1= Nelon) + i (clzn)
A€[0,1)
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for all ¢ € R such that B > cls,.

The sum

> vI(ABy+ (1-NBy) = I/ (By, By)
xef0,1)

is called a relative Morse index between B; and Bj if By < Bsy. I learnt this concept
from Fei[F] and Long-Zhu[LoZ2, ZL]. The above version is from Dong[Do5].

Similar to Theorems 1.0.3 and 1.0.4, the index (if(B),vf(B)) can be used to
investigate the problem

_Js—H'(t,2) =0,
z(0) = 0 = z(1),
where z = (z,v),z,y € R", H € C([0,1] x R?") and H'(t, 2) denotes the gradient

of H(t,z) with respect to z.
It is easy to check that

if (clzn) = i(c*I,), Ve >0,
if (chan) — if (¢ Ion) = I(€ Izn, clz,), Vo> ¢
and
v(B) = v/ (diag{B, In})

for all B € L>=([0,1], £,(R2")). We will show in Chapter 6 that i/ (B) is well-defined
and for any B € L*°([0,1], L,(R™)),

i(B) = i/ (diag{B, I}).
The last topic in this book concerns index theory for linear operator equations
Az — Bz =0

and multiple solutions for

Az — V&(z) =0,
where A is self-adjoint in X with o(A) = 04(A), X is a real Hilbert space, B € L,(X)
the space of bounded self-adjoint operaptors on X and @ : Z = D(|A|’1‘) — R is
continuous differentiable and V& € C(Z, X) such that

P (z)y = (Vo(z), y)x

for all z,y € Z. Chapter 7 concerns the case o(A) = 04(A) is bounded from below,
but Chapter 8 0(A) = 04(A) unbounded from both above and below.
For related material we refer to [Ch1-3, E, EG, ELS, Lo4 and 5, MW, R].



Chapter 2
Duffing Equations(I)

In this chapter we give a proof for the Lazer-Leach theorem and generalize it to
various cases for Duffing equations. The key ingredient is a classification theory for
(2.2.1)—(2.2.2). The main results are from Dong[Dol and Do2].

2.1 Lazer-Leach’s theorem

Consider the problem

z” + h(t,z)z = e(t,z), te€(0,1), (2.1.1)
z(0) = 0 = z(1), (2.1.2)

where h,e : [0,1] x R — R are continuous. The main results of this section are the
following theorems.

Theorem 2.1.1 Assume that e(t, z) is bounded and h(t, z) satisfies

(h1) there are positive integer k and small enough constant § > 0 such that

k2n? + 8 < h(t,z) < (k+1)2x%2 -5, (t,z) €[0,1] x R.

Then (2.1.1)—(2.1.2) has one solution.
Theorem 2.1.2 Assume e(t,z) is bounded and h(t, z) satisfies
(h2) there is a constant § > 0 such that

h(t,z) < w* -4, (t,z)€[0,1] xR.

Then (2.1.1)-(2.1.2) has one solution.

We need the following lemmas.

Lemma 2.1.1(Schauder Fixed Point Theorem) Let {2 be a closed convex
subset of a Banach space. Suppose T : 2 — £ and T is continuous and T'(f2)
relatively compact. Then there is a point x € 2 such that T'(z) = z.

Lemma 2.1.2([Chl, Theorem 1.1.5], [Ch3, Theorem 1.1.1] and [E, Theorem
11.3.4]) Assume f € C([0,1] x R",R) and there exists M > 0 such that

|ft z)| < M(1+|z]), V(¢ 2)€[0,1] xR",
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where |-| denotes the usual norm in R™. Then the map z(-) — f(-,z(-)) is continuous
from L2([0,1],R™) to L2[0,1] = L%([0, 1], R).
Proof of Theorem 2.1.1 Let X = L2[0,1] with the usual norm ||z|2 =

1 3 1
( / a:(t)th) and associated inner product (z,y)2 = / z(t)y(t)dt, and define
0 0

K, : X — X by z = Kju is the unique solution of the equation

satisfying (2.1.2). Then

(K1z)(¢ / G1(t, s)z(s)d

where G1(t,s) =t(1—s) as0<t<s<1,Gi(t,s) =s(1—t)as0<s<t <l Itis
easy to check that K is self-adjoint and compact and 0 is not an eigenvalue of Kj.
By spectral theory there exist a basis {e;}32; and nonzero sequence p; — 0 such
1
72 and we can choose e; = v/2sin jnt.
Thus, {sinjmt}32; is an associated orthogonal basis of X. Let # = Kpu be the

that (e;,ex)2 = 0;k, K1e; = pje;. So u; =

unique solution of
1
—z" - <k2+k+§> nx =y
satisfying (2.1.2). A direct computation shows that for any u € L?[0, 1],

(Kau)(t / Ga(t, s)u(s)ds,

where Gs(t,s) =

1
= sinpussinu(l —¢) for 0 < s < t < 1 and Ga(t,s) =
in g

2

1
sinputsinpu(l —s) for 0 < t < s <1, and p = (k‘?‘—{—k—l— 5) n. In par-

psin p
ticular

-1
(Kae)) = (7 =¥~k = 3) 72,00

. == . .
Then for any v € X with u = E i sin jt,
J:

o 1 -1 B ) '
(Kau)(t) ch( kz—k—§> n~ 2 sin jmt.

Jj=1

So K3 : X — X is compact and

e
Kaull < (k+3) w2l
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Set
(Nu)(t) = h(t,u(t))z(t) — (k2 +k+ %) m2u(t) — e(t, u(t))

for any u € X. Then N : X — X is continuous via Lemma 2.1.2, and

1
INull2 < ((k + 5) n?— 5) lull2 + M, Yue X,

where M > 0 is a constant satisfying that |e(¢,z)] < M for all (¢,z) € [0,1] x R.
Choose R > 0 such that M < 8R. Then KN : Ug — Ug has a fixed point z in Ug
by Lemma 2.1.1, where Ug = {x € X|||z|2 < R} and Ug, is its closure. And this Z
is a solution of (2.1.1)—(2.1.2). The proof is complete. B

Proof of Theorem 2.1.2 Let z = z(t) be a solution of (2.1.1)—(2.1.2). Mul-
tiplying (2.1.1) by z and integrating over [0, 1] yield

ll£]|12 < /0 (h(t, z)x — e(t,z))zdt < (n® — 0)||z||3 + M| z|2. (2.1.3)

We need the following lemma.
Lemma 2.1.3(Poincare’s inequality) For any = € H}[0, 1],

]2 = wl|z|2,

where H}[0,1] = {x € H*[0,1]|z(0) = 0 = (1)} and as usual H'[0,1] = {z : [0,1] —
R|z(t) is absolutely continuous on t € [0,1] and & € L2[0, 1]} with the inner product

1 i 1
@12 = [ ((030) +o(y(O)dt and norm ] = ( [ oy +z(t)2>dt)
This lemma and (2.1.3) show that

wM
S8
where ||z||o = max{|z(t)| : t € [0,1]}. Set hi(¢t,z) = h(t,z) as (¢, z) € [0,1]x[-R, R],
hi(t,z) = h(t,=R) as £z > R. It suffices to prove (2.1.1)-(2.1.2) with A replaced
by hi has one solution. Let M be a constant satisfying M; > n® and —M; < h(t, z)
for any (t,z) € [0,1] x [-R, R]. And let 2u? = M; —n? +§ and p > 0. Let z = K3u
be the unique solution of the problem

lzllo < ll#ll2 < R,

—i 4 plx = u(t),
2(0) =0 = z(1).

Then
(Ksu)(t / Gs(s,t)u(s)ds,
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where G3(s,t) = sinh u(1 — t)sinh(us) as 0 < s < t < 1 and Gs(s,t) =

wsinh
sinh p(1 — s) sinh(ut) as 0 < t < s < 1. Because (j?n? + p?)Kse; = e , for

wsinh g

oo
any u = E cjej,

j=1
(o o]

(Ksu)(t) =

=1

Cj .
j2J't2 4 NZ 3

Thus ||K3|| < 52_}_—“2 Let (Nu)(t) = (h1(¢,u(t)) + p?)u(t) — e(t,u(t)). We have

| KsNu| < Ma + 61 |ull,

M M1 + J'l:2 ) _
where Mz = —m, 1= m Let (1—51)R1 Z Mg. Then K3N . l']R1 —
Ug,. By Lemma 2.1.1, there exists Z such that £ — K3NZ = 0. ]

In order to prove Lemma 2.1.3, we need the following lemma.
Lemma 2.1.4 Assume z € H}[0,1], f € L?[0, 1] such that

1 1
/:bydt—/ yfdt =0, Yy H0,1].
0 0

Then
E+f(t)=0, ae te€ (0,1), z(0)=0=z(1).

t 1
Proof Set e(t) = z(t) +/ f(r)dr — C such that / e(t)dt = 0 and let
0 0

¢ 1
y(t) = / e(r)dr. Then / le()|?dt = 0 and e(t) = 0 for a.e. t € [0,1]. Hence, the
0 0

result follows.
Proof of Lemma 2.1.3 Set Z = H}[0,1] with the inner product (z,y)z

1 1
/ #(t)y(t)dt and define K : Z — Z by (Kz,y)z = / zydt for any z,y € Z. K
0 0

is self-adjoint and compact and 0 is not its eigenvalue. By spectral theory there is
a basis {z;} of Z and a nonzero sequence A; — 0 such that (z;,zx)z = djx, Kz; =

1 1
/ :L‘j:l:dt = )\j / i?jj)dt
0 0

for all z € H}[0,1]. And hence

)\jxj. So

1
Zi+ 3% =0, z;(0) =0 = x;(1)
J



