FOCUS

NUMERICAL METHODS IN ENGINEERING SERIES

Computational Design of
Lightweight Structures

] Form Finding and Optimization

Sl WILEY

Benoit Descamps



FOCUS SERIES

Series Editor Piotr Breitkopf

Computational Design of
Lightweight Structures

Form Finding and Optimization

Benoit Descamps

Sl WILEY




First published 2014 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the
CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the
undermentioned address:

ISTE Ltd John Wiley & Sons, Inc.
27-37 St George’s Road 111 River Street
London SW19 4EU Hoboken, NJ 07030

UK USA

www.iste.co.uk www.wiley.com

© ISTE Ltd 2014

The rights of Benoit Descamps to be identified as the author of this work have been asserted by him in
accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2013957304

British Library Cataloguing-in-Publication Data

A CIP record for this book is available from the British Library
ISSN 2051-2481 (Print)

ISSN 2051-249X (Online)

ISBN 978-1-84821-674-7

MIX

Paper from
responsible sources
FSC

wwscoy  FSC® C013604

Printed and bound in Great Britain by CPI Group (UK) Ltd., Croydon, Surrey CR0 4YY



Computational Design of Lightweight Structures



Preface

Designing structures as light as possible is an intelligent
and responsible way for engineers and architects to conceive
structural systems. The key ingredient to achieve lightness
relies on a thorough study of the structural form, which
establishes a dialogue with forces. Nowadays, these
structures are able to cross incredibly wide spans with the
least amount of materials. Still, the quest for lightness must
cope with current design constraints, which give sense to
modern structures.

This book presents a computational method for the
preliminary shape design of lightweight structures. The
strategy relies on fundamental concepts of structural design
to formulate an optimization problem combining the theories
of mathematical programming and structural mechanics. The
method considers many design settings including stress and
displacement constraints, self-weight, multiple loading
conditions and structural stability considerations. In
addition, the conceptual framework is well suited to
accommodate project-specific constraints. These building
blocks result in an integrated design process at a midway
between form finding and structural optimization. Several
large-scale applications of three-dimensional bridge and
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dome structures emphasize the versatility and robustness of
the proposed method.

This book is primarily written for graduate students and
researchers in architectural, civil and mechanical
engineering. It is also of significance for practioners in
structural design who are concerned with the design of
lightweight structures. Readers are assumed to have some
basic knowledge of mathematical optimization and structural

computational mechanics for a better understanding of this
book.

Classical computational methods for designing lightweight
structures are focused either on finding an equilibrium shape
or are restricted to fairly small design applications. In this
book, we aim to develop a general, robust and easy-to-use
method that can handle many design parameters efficiently.
These considerations have led to truss layout optimization,
the goal of which is to find the best material distribution
within a given design domain discretized by a grid of nodal
points and connected by tentative bars.

Chapter 1 presents the general concepts of truss layout
optimization, starting from topology optimization where
structural component sizes and system connectivity are
simultaneously optimized. The range of applications covers
limit analysis and the identification of failure mechanisms in
soils and masonries. To fully realize the potential of truss
layout optimization for the design of lightweight structures,
the consideration of geometrical variables is then introduced.
The resulting truss geometry and topology optimization
problem raises several fundamental and computational
challenges, which are identified.

Then, Chapter 2 addresses truss geometry and topology
optimization by combining mathematical programming and
structural mechanics: the structural properties of the optimal
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solution are used for devising the novel formulation. To avoid
singularities arising in optimal configurations, the present
approach disaggregates the equilibrium equations and fully
integrates their basic elements within the optimization
formulation. The resulting tool incorporates elastic and
plastic design, stress and displacement constraints, as well as
self-weight and multiple loading.

In addition, the inherent slenderness of lightweight
structures requires the study of stability issues. As a solution,
Chapter 3 proposes a conceptually simple but efficient
method to include local and nodal stability constraints in the
formulation. Several numerical examples illustrate the
impact of stability considerations on the optimal design.

Finally, the investigation of realistic design problems in
Chapter 4 confirms the practical applicability of the proposed
method. It is shown how we can generate a range of optimal
designs by varying design settings. In this regard, the
computational design method mostly requires the designer to
have a good knowledge of structural design to provide an
initial guess.

Benoit DESCAMPS
January 2014



Introduction

This introduction first describes lightweight structures in
a historical context and points out current design issues. To
tackle these challenges, section 1.2 briefly discusses an
empirical design process along with available methods for
form finding and structural optimization. As a prelude to the
novel method presented in this work, section 1.3 introduces
the conceptual framework of hanging models, plastic design
and layout optimization leading to the computational design
problem. The main achievements of the book are finally given
in section 1.4.

I.1. About lightweight structures

Structural design is an inseparable discipline of the art of
building, whose governing factors are of a social, cultural,
environmental, technical and financial nature. Given the
considerable impact of the construction sector in terms of
resources, today’s expectations are directed toward “meeting
growing demand with limited resources”l. In this context,
designing structures as light as possible may greatly

1 This issue was the topic of JABSE-IASS Symposium entitled “Taller,
Longer, Lighter”, held in London in 2011, and jointly organized by the
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contribute to more sustainability: by reducing the structural
mass, we not only reduce the quantity of raw material, but
we also decrease the embodied energy used for its production,
transport, assembly, maintenance, and demolition or reuse,
as well as the impact on the ground and foundations
[KAN 07].

Lightweight structures are most suitable for covering wide
spans with a limited amount of material. It is often argued
that aesthetic values that make these structures visually
appealing come from a functionally correct form, which
mainly determines whether the system is able to withstand
external loads without deteriorating serviceability, in
addition to assessing the range of structural performance
that can be attained. Mass and stiffness are the two
fundamental criteria whose optimum is like systems of
minimum energy in nature. To achieve the lowest
mass-to-stiffness ratio, lightweight structures must be
conceived as a force-differentiated system where tension,
compression and shear are distributed on different
components (cables, bars, membranes, etc.) [ERI 06]. If the
structural form is inadequate, bending stiffness is required to
compensate unbalanced forces, but this additional resistance
adversely affects structural performance.

The emergence of lightweight structures can be traced
back to the second half of the 19th Century. This period
witnessed the advent of new material technologies such as
steel, reinforced concrete, resistant glass and, later, fabric
membrane. Together with advances in analysis and design
tools, engineers and architects have been challenged to build
increasingly lighter structures [LEW 03]. This has led to the
development of the structural typologies depicted in

International Association for Bridge and Structural Engineering (IABSE)
and the International Association for Shell and Spatial Structures (IASS).
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Figure 1.1. An early example was the Crystal Palace designed
by Joseph Paxton for the Great Exhibition in London in 1851.
The roof of 80 kg/m®? was a real progress at that time
[KAW 11]. Another pioneering construction was the
hyperboloid lattice tower by the Russian engineer Vladimir
Shukhov in 1896. In the 1920s, Anton Tedesko first
introduced reinforced concrete thin shells in the United
States [HIN 04]. This expansion was pursued worldwide by
Félix Candela [MOR 08], Heinz Isler [GAR 03] and André
Paduart in Belgium [ESP 03]. The limit of lightness was
achieved with tensile structures constructed of prestressed
cable nets and fabric membranes; the strength coming from
the anticlastic curvature of the geometric surface. A famous
example of cable net is the roof of the Olympic stadium in
Munich built in 1972, qualified as “architecture of the
minimal” by its designer Frei Otto [OTT 96]. Pneumatic
structures exhibit a close resemblance with tensile structures
except that they are stabilized by the pressure of compressed
air and prestressed cables. They also have an extremely low
mass, as witnessed by the air-supported roof of 3 kg/m?
covering the US Pavillon at Expo’70.

Discrete

Continuum : m g w Pod

Compression Bending Tension Hybrid

Figure L.1. Classification of typologies of lightweight
structures according to the actual stress state and the type of
structural components

It should be mentioned that these historical examples
were constructed in a period when labor was highly qualified
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and inexpensive, the requirements for safety and durability
were more permissive, and when technical innovation gave
meaning to the project. At the dawn of the 21st Century, a
question arises: “the lighter, the better?” [KAW 11]. Although
lightness remains the leading design criterion, this sole
achievement is largely insufficient to cope with the increasing
complexity of contemporary architecture. Nowadays,
lightweight structures should be designed as a whole by
including the multitude of design constraints. This will result
in hybrid systems lying at the boundary of different
typologies.

I.2. Design methodologies

The shaping process for lightweight structures is
traditionally based on empirical knowledge and designers’
experience. An initial design is created, tested and updated in
a series of structural analyses in order to achieve an optimal
shape (Figure 1.2(a)). However, each iteration requires
engineers to manually generate the geometry of the analysis
model. The task is time-consuming, error-prone and
cumbersome for the designer. Furthermore, no matter how
brilliant the designer is, it is often difficult to accurately
predict and comprehend the effects of changing the geometry
of lightweight structures without the risk of deteriorating the
stiffness. This trial-and-error process can be advantageously
pushed forward by computational design methods.

Still, two fundamental issues of lightweight structures
must be thoroughly addressed to benefit from these
developments: equilibrium and optimality [DES 11a]. The
search for equilibrium is the basic requirement for safety, but
it may transform a satisfactory design into a masterpiece
when it is properly considered. The search for optimality is
the never-ending task of improving the design while
satisfying project constraints. Over the last 40 years,
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researchers have been continuously devising innovative
methods to address these issues.

@ - @ Side @ Probler oesign
i b

a) Trial- b) Form ¢) Optimization
and-error finding

Figure 1.2. Different kinds of design process with a) the
conventional trial-and-error process, b) the structural form-finding
process and c) the structural optimization process

Finding an equilibrium shape is the main purpose of
structural form-finding methods. Given the boundary and
external loading conditions, this state-to-design approach
requires the designer to prescribe the internal forces to
obtain the geometrical coordinates that solve the equilibrium
equations (Figure 1.2(b)). The literature covering structural
form finding is briefly discussed in Appendix Al.1. Although
structural efficiency may result as a welcome side effect (no
optimality criterion is used, in fact), there are frequent
situations in which we wish to impose geometrical
constraints. In this case, form-finding methods are
inadequate since the shape is the output of the process.
Furthermore, stability issues that may considerably affect
the optimal shape cannot be considered. Some strategies have
been proposed [ZHA 06b, DES 10, DES 11c¢, RIC 13, QUA 13],
but their scope is restricted to specific problems.

Finding an optimal shape is the ambitious task of
structural optimization. The approach requires the designer
to mathematically formulate the structural design problem
as an optimization problem consisting of the minimization of
an objective function subject to inequality and equality
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constraints. In the classical design-to-state (or nested)
approach, the design variables are introduced in a dedicated
structural analysis routine which computes the state
variables. Based on these responses, an optimization
algorithm iteratively updates the design toward the optimum
(Figure 1.2(c)). As a rule for selecting an optimization
algorithm, the more intensive the local exploitation, the
stronger the need for specialized information about the
problem to be optimized. Deterministic methods are
problem-specific and best suited for local search (these
aspects will be discussed later in this book), whereas
metaheuristics (see the discussion in Appendix Al.2) have
broader search capabilities. Structural optimization problems
are often very large (several thousand variables and
constraints) and the design space comprises many local
optima. Hence, deterministic methods might produce small
improvements if the problem is not properly stated, whereas
metaheuristics might be inefficient if no variable selection
has been applied a priori. Furthermore, the variable nature
of the structural layout causes singularities during the
optimization process [RIC 12, DES 13b].

Although  structural optimization methods have
tremendous potential, we have to accept that the promise of
these approaches is not easily realized. These persisting
problems prevent their routine use by structural designers.
Instead, the widespread use of computer-aided design tools
has enabled the development of increasingly complex
geometries in freeform architecture. In this long-awaited
freedom of design, structural considerations were perceived
as restraining the creativity of designers. As a consequence,
structural engineers have been excluded from the
preliminary shape design process and their role has been
recentered on sizing and checking arbitrarily defined
structures to meet the standard code requirement. Against
all odds, a handful of structural designers still pursue the
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line of thought for unity and coherence between form and
force in architecture. Former theories on structural design
can inspire the development of creative, yet rigorous,
strategies to empower this momentum.

1.3. Back to the roots of structural design

The design of lightweight structures relies on the catenary,
whose mathematical definition is a hyperbolic cosine curve
idealizing a hanging chain under its own weight when
supported at its ends. The development of hanging-chain
models started at the end of the 17th Century [KUR 08]. In a
Royal Society Meeting, Robert Hooke raised the issue of
finding the ideal shape for an arch and its thrust for which
buttresses must resist. As a pioneering idea, he proposed
today’s well-established approach of inverting the
hanging-chain model to determine the equilibrium shape of
an arch [HOO 75]. Soon after, Gregory extended Hooke’s idea
by saying, without formal proof, that any other arch whose
thickness encompasses a catenary curve is also stable
[GRE 97]. The first rigorous calculation of the thrust line
based on funicular polygon of graphic statics is attributed to
Moseley [MOS 35] and Méry [MER 40].2 This (static)
“equilibrium approach” was sparsely used in Europe until the
Antoni Gaudi’s nature-inspired work applied the method in
the chapel of Colonia Giiell and the arches of Casa Mila
[HUE 06].

During the 19th Century, the equilibrium approach was
severely criticized by proponents of the elastic philosophy
[HEY 99]. Classical elastic theory states that, in statically
indeterminate structures made up of linear elastic material,
among the infinity of statically admissible stress field, the

2 Techniques based on graphic statics are still used today for their intuitive
and visual features of equilibrium problems [BLO 07, VAN 12].
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actual state is obtained by enforcing the compatibility
conditions between strains and displacements (continuity of
elements, boundary conditions). However, experimental
measures on masonry and steel frameworks3 exhibited
discrepancies with elasticity theory. As claimed by Wilson
[WIL 98], “equilibrium is essential, compatibility is optional”
because compatibility is often violated, for instance in
masonry due to cracks. Thus, plastic theory was born by the
inability of elastic design theory to predict the actual stress
state in a built structure.

Gregory’s statement about the stability of arches was in
fact a precursor of plastic theory (or limit analysis). Assume a
ductile material in the absence of elastic instability, any
stress distribution enforcing static equilibrium equations
without violating the yield condition is carried safely by the
structure via plastic redistribution [HOR 50]. Together with
the safe theorem, plastic theory replaces the problem of
determining the actual stress distribution by a projected limit
situation. The selection of an equilibrium state can be
performed by adding the requirement that the solution
should require the least amount of material (i.e. a lower
bound solution). Hence, plastic theory is naturally oriented
toward design [BUR 04].

In 1904 Michell stated a fundamental design principle of
plastic theory [MIC04]: given a design domain
(Figure 1.3(a)), the lightest structure satisfying the yield
condition consists of a continuum with mutually orthogonal
fields of tension/compression members oriented along
principal strains (Figure 1.3(b)). The analytical method to
determine these lines assumes a fully stressed design in all

3 In the 1920s, an experimental tests campaign on steel frames was carried
out by the Committee for the Development of Steel Structures in the UK
[HUE 06].
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load-carrying members. The displacement field must remain
continuous throughout the design domain and satisfy the
kinematic restrictions imposed on the solution [PIC 11].
Although the scope is essentially theoretical, the method is
still being developed today [ZHO 04, DEW 09, SOK 10,
ROZ 12] because (1) it provides the essential information
about the limit of economy for a given structural frame and
(2) it lays the basis of layout optimization.

a) Design domain b) Michell’s optimal solution

Figure 1.3. Michell’s half-wheel. The design domain is subjected to a
central load and supported at both extremities a). The optimal
solution is a semicircular arch with tension spokes
carrying the load b)

Layout optimization is a computational method at the
boundary between mathematical programming and
structural mechanics. It deals with the simultaneous
optimization of the sizing, the geometry and the topology of
discrete or continuum mechanical systems [ROZ 92]. For
discrete systems such as trusses, the most investigated
aspect is sizing and topology optimization4 where structural
component sizes and system connectivity are simultaneously
optimized using continuous cross-sectional areas. The
convexity of formulations in topology optimization allows for
addressing very large structural designs by deterministic

4 In the literature, sizing and topology optimization is often called topology
optimization for short.
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optimization algorithms. The range of current applications
covers the lower bound analysis of masonry arch and vaulted
structures, the identification of critical failure mechanisms in
soil mechanics, the development of strut-and-tie models for
reinforced concrete and the design optimization of truss
frames. As topology optimization could also mimic geometry
optimization by working with a dense grid, some attempts
have been made to apply topology optimization to the
preliminary shape design of lightweight structures [PRI 05],
but this often results in impractical designs.

By introducing geometrical variables, the problem
becomes inherently non-convex, thus prone to multiple local
optima. This is not particularly troublesome as, in practice,
the “perfect” structure is a theoretical delusion. Often for the
human mind, a suboptimal design makes more sense than
the global optimum. Baker said: “Consider the Eiffel Tower: it
is an extremely inefficient way of creating a restaurant, but
Paris, and the world, would be much diminished by its
absence” [BAK 11]. Any local optimum is potentially
interesting for the designer. Hence, our approach will allow
the designer to infuse an architectural intent to focus on
meaningful regions of the infinite design space.

I.4. Aim and scope

This book aims to give a unified optimization formulation
for the preliminary shape design of lightweight structures.
The choice of the truss element formulation for modeling
such structures made up of discrete components is vindicated
at early design stages.

Most previous works in truss layout optimization have
focused on topology optimization. In the present work, we
claim that incorporating geometry optimization gains the full
potential of truss layout optimization. However, truss



