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Preface

Aims of This Book

1. To present calculus and elementary differential equations with a mini-
mum of fuss—through practice, not theory.

2. To stress techniques, applications, and problem solving, rather than
definitions, theorems, and proofs.

3. To emphasize numerical aspects such as approximations, order of magni-
tude, and concrete answers to problems.

4. To organize the topics consistent with the needs of students in their
concurrent science and engineering courses.

5. To illustrate the usefulness of computers in applications of calculus.

6. To introduce vector methods and their applications in physical problems.

Why This Approach?

Calculus can be an exciting subject; no other gives so much new scope
and power. Yet painful experience has shown that theory and rigor tend to
stifle the excitement. The teaching of real variables to freshmen and sopho-
mores has generally been a failure, a great disservice to students, and a source
of well-deserved criticism from science and engineering departments.

Our presentation is informal; we reject the practice of writing calculus
texts with the style and precision of research papers. Instead of formal
definitions, theorems, and proofs, we include intuitive discussions, rules of
procedure, and realistic problems. Occasionally we allow ourselves the
liberties of circular arguments or slight inconsistencies when expedient.
We omit technicalities that almost never occur in practice, rather than
clutter the exposition “for the sake of completeness.”

The thoughtful student who wants to know more theory will find in
Chapter 36 a sketch of some theoretical high points and references to more
detailed discussions.

We stress explicit computation, and when appropriate, indicate the value
of computers in numerical work. However our book is not a computerized
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calculus; it is a calculus text that recognizes the increasing importance of
computers in all branches of science. (The material on computer applications
can be omitted without loss of continuity.)

Organization

This book presupposes reasonable skill in algebraic manipulation,
familiarity with the trigonometric functions, and a bit of analytic geometry
—graphs of functions and basic facts about straight lines and conic sections.
However, some of these topics are reviewed briefly as needed.

The text is divided into three parts, corresponding more or less to a three-
semester course. This division and the order of topics are merely guidelines,
and can be modified if desired.

Part I presents an elementary introduction to most of the basic material
of calculus: derivatives, direction fields, antiderivatives, integrals, volumes
by slicing, partial derivatives, low order Taylor polynomials, exponential
and trigonometric functions.

Part I is specifically designed for the typical student who needs the basic
topics—but not in great depth—in his physics, chemistry, and engineering
courses soon after he begins calculus. In particular he needs differentiation
and integration of a few standard functions, the most elementary aspects of
differential equations, and the concept of partial derivatives.

Part IT includes a deepening of the material of Part I and several new
topics: inverse functions, interpolation, numerical integration, first and
second order differential equations, vectors, double integrals over rectan-
gular regions.

The student should acquire in Parts I and IT a working knowledge of the
functions he will need in real life—their graphs, rates of growth, orders of
magnitude, and interrelations.

Part III completes calculus with harder topics on approximations and
several variables: Taylor series, approximate solutions of differential equa-
tions, complex functions, double and triple integrals with applications.

The final chapter is a brief introduction to theory.

Order of Topics

Considerable flexibility is possible in the order of topies, particularly
after Chapter 19.

The material in Part I will move along briskly; there may be time (for
those on a semester system) to include a few chapters from Part II. These
can be inserted anywhere after Chapter 7. In Part I three sections are
marked [optional].

There is even more leeway for rearrangement of topics in Parts IT and
III. After 19, several chapters can be omitted, permuted, or postponed.
For example, Chapters 21 and 22 on differential equations can very well be
left until much later. Chapters 30 (Approximate solutions of differential
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equations), 31 (Complex numbers), and 35 (Applications of multiple
integrals) can be omitted entirely. Furthermore, Parts I and III include
many optional sections. Chapter 36 (Calculus theory) may be studied at
any time.

A few optional sections and a few exercises involve the use of matrices.
These will provide meaningful applications for a previous or concurrent
course in linear algebra, but they are not an integral part of the text.

Examples and Exercises

The worked examples are the core of the text. Many times, methods are
explained more through choice examples than elaborate discussions. We are
always result-oriented and insist on explicit numerical answers.

A number of topics are included as much because they are a source of
meaningful, non-contrived problems as they are of interest in themselves.

Physical examples occur in some sections and in many exercises. The
science or engineering student is usually impressed by this material, and
motivated to learn it.

Students have difficulty with calculus problems for several reasons: (a)
inability to perform lengthy algebraic and numerical calculations, (b) too
many steps involved (the beginning student often does not know where to
start a problem involving several steps), and (¢) lack of space perception.

The exercises in Part I are easy and involve few steps. Each exercise set
in Parts IT and III begins with easy exercises but continues to harder ones,
the level of difficulty increasing as the book progresses, so that by Part III
the student is solving substantial calculus problems. Altogether, about
thirty-one hundred exercises are included.

Those exercise sets containing problems for the computer also contain
parallel problems for hand computation.

We recommend use of a slide rule and a book of tables (such as the
C. R. C. Standard Mathematical Tables). We include some tables on pages
913-926, and basic formulas in the inside covers.

lustrations

To solve space problems, the student must be able to make clear draw-
ings. We have purposely restricted the illustrations in this book to simple
line drawings, the kind the student can make himself (in fact, we include an
optional section on how to do so). We emphasize accuracy in our drawings.
For example, a tangent to a sphere which is parallel to the y-axis must
actually appear so in a plane projection.
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1. The Derivative

1. INTRODUCTION

The processes of nature are dynamie. Living matter grows; a planet
moves in its orbit; a chemical reaction occurs at a certain rate; a rocket
accelerates; a heavy object falls at increasing speed; a quantity of radio-
active matter decays; a particle of fluid in a stream flows along its path
with varying speed. Differential Calculus is the precise scientific theory that
unifies the study of most situations in which there is dynamic change. It is
indispensable for your further study of mathematics, physics, chemistry,
engineering, modern biology, economics, virtually every exact science, both
the theory and the application.

The main objects of study in Differential Calculus are functions. A
function is a law which tells how one variable quantity is related to another.
Given a particular function, Differential Caleulus shows us the precise rate
of change of the dependent variable relative to change in the independent
variable. For example, if the dependent variable z is the distance a particle
moves in time ¢, where ¢ is the independent variable, then x = 2(t) is the law
of motion of the particle; Calculus tells us the rate of change of distance
per unit time, or instantaneous speed. As another example, the pressure P
(dependent variable) of a gas confined in a cylinder of variable volume V
(independent variable) varies according to the gas law

P = 7 (¢ a constant).

From Calculus we learn the rate at which the pressure P changes relative
to change in the volume V.

2. SLOPE

Differential Calculus deals with funections whose graphs are smooth
curves. The graph of such a funection y = S(x) is usually drawn on rec-
tangular graph paper (Fig. 2.1).



