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Preface

This book introduces the kinematic geometry of linkages in both analysis and synthesis, and
builds up a theoretical system from planar, spherical, to spatial. The presentation differs from
traditional ones in the approaches of both the differential geometry for kinematic geometry and
the saddle point program for kinematic synthesis of linkages. Kinematic geometry provides
the theoretical basis for the kinematic synthesis, both precise and approximated, of linkages
by invariants.

The kinematic geometry of a rigid body, logically the combination of the kinematics of a rigid
body and the geometry of graphs, tries to study the local geometrical properties of loci from
the point of view of continuous motion along trajectories, while this continuous motion can
certainly be visualized as the differential of the Frenet frame of the trajectories with respect to
its arc length. Therefore, differential geometry, of course, may be the first choice in research on
the kinematic geometry of arigid body. However, the current research situation is unfortunately
quite different, and this is one of the reasons for the authors writing this book.

There are currently many methods to study the kinematic geometry of a rigid body, such as
geometry, algebra, screws, matrices, complex numbers, vectors, etc., each with their own merit
in different application cases. In fact, this originates from the geometry by Burmester, which
converts the displacement (or movement) of a lamina at several finite separated planar positions
into a geometrical graph by means of corresponding poles of rotation. The algebraic equations
are then built up to analyze the properties of geometrical graphs, which expand the object
of research to all graphs of the lamina. For modern mathematics with expressions of vector
algebra and invariants of geometrical graphs, it is difficult to identify them as belonging to the
traditional geometry or algebra. For example, the differential geometry of curves and surfaces,
both persists in geometrical significance and avoids the effects of external factors on geomet-
rical graphs. In particular, a moving Frenet frame with three mutually orthogonal axes, or the
natural trihedron of a curve or ruled surface, moving along the curve or surface is introduced
to examine the intrinsic geometrical properties in differential geometry, whose derivatives can
be viewed as the motion conversion for a rigid body at infinitesimally separated positions, just
like the poles in finite separated positions, which is believed to be a powerful tool of kinematic
geometry for arigid body, in both planar and spatial motion. The kinematic geometry of a rigid
body with multiple degrees of freedom is studied in multi-dimensional space. Of course, there
is a natural extension from two or three dimensions to multiple dimensions while the classi-
cal differential geometry is developed into modern differential geometry, such as differential
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manifolds, Lie groups, and Lie algebras, although these are much more non-representational
mathematical methods and the reader may have more difficulty understanding them.

The discrete kinematic geometry of a rigid body, naturally combining the discrete kinematics
of a rigid body and the geometry of discrete graphs, studies the global geometrical properties
of discrete trajectories, comprised of a series of discrete points or lines, which are globally
compared with constraint curves or surfaces, while the differences between them or their
errors have to be defined and estimated in terms of their invariants. Hence, the best uniform
approximation in multi-dimensional space, or the saddle point programming approach, may
be adopted first since it developed from one-dimensional space, or the interpolating approach
of the Chebyshev polynomial originally, initially applied in the functional synthesis of link-
ages. The saddle point programming approach has been applied widely in geometrical error
evaluations for manufacturing and measuring. However, the current objective function in the
optimal synthesis of linkages for multiple positions, or the error evaluation method, is the least
square structural error or the best square approximation, which intensively depends on the ini-
tial values and may be valid for the special cases but invalid for the general problems since the
structural error is not uniformly defined and the design variables are redundant, other than the
invariants in the approach of the saddle point program. This is another reasons for authors to
write the book.

The book has seven chapters and two appendices in the order of planar, spherical, and spatial
kinematic geometry of a rigid body and synthesis of linkages, so it is easy for readers to gain
familiarity with the differential geometry and gradually build up the theoretical system. Also,
for the reader’s convenience, the required elemental knowledge of differential geometry is
partly arranged in Chapter | for planar curves and Chapter 3 for space curves and surfaces.
Chapters 1 and 2 describe the kinematic geometry and synthesis of planar linkages. Chapters
4 and 5 state the kinematic geometry and synthesis of spherical linkages, which is the bridge
between the planar and spatial motion and a transition, even though it can be visualized as a
special case of spatial motion. The kinematic geometry and synthesis of spatial linkages are
respectively discussed in Chapters 6 and 7 in detail. In the appendices, the displacements of the
spatial linkage RCCC are solved to provide the data for the numerical examples of kinematic
geometry and synthesis of spatial linkages in the book.
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1

Planar Kinematic Differential
Geometry

Kinematics, a branch of dynamics, deals with displacements, velocities, accelerations, jerks,
etc. of a system of bodies, without consideration of the forces that cause them, while kinematic
geometry deals with displacements or changes in position of a particle, a lamina, or a rigid body
without consideration of time and the way that the displacements are achieved. As a combina-
tion of kinematic geometry and differential geometry both in content and approach, kinematic
differential geometry describes and studies the geometrical properties of displacements.

There are a number of articles and books on kinematic geometry. Pioneers such as Euler
(1765), Savary (1830), Burmester (1876), Ball (1871), Bobillier (1880), and Miiller (1892)
established the theoretical foundation and developed the classical geometrical and algebraic
approaches for studying kinematic geometry in two dimensions some hundred years ago. The
classical geometric and algebraic approaches are still in use today. Differential geometry is
favored by many researchers studying the geometrical properties of positions of a planar object,
changes in its positions, and their relationships. Invariants, independent of coordinate systems,
are introduced to describe the geometric properties concisely. Thanks to the moving Frenet
frame for describing infinitesimally small variations of successive positions, the positional
geometry can be naturally and conveniently connected to the time-independent differential
movement of a planar object.

This chapter deals with the kinematic characteristics of a two-dimensional object (a point,
a line) in a plane without consideration of time by means of differential geometry. Though
abstract, the explanation is judiciously presented step by step for ease of understanding and
will be a necessary foundation for studying the kinematic characteristics of a three-dimensional
object by means of differential geometry in later chapters.

Kinematic Differential Geometry and Saddle Synthesis of Linkages, First Edition. Delun Wang and Wei Wang.
© 2015 John Wiley & Sons Singapore Pte Ltd. Published 2015 by John Wiley & Sons Singapore Pte Ltd.



2 Kinematic Differential Geometry and Saddle Synthesis of Linkages

1.1 Plane Curves

1.1.1 Vector Curve

A plane curve I’ is represented in rectangular coordinates as

X=x(
=l (1.1)
y =y

where ¢ is a parameter. The above equation can be rewritten in the following way by eliminating

the parameter f:
y=F) (1.2)

or in implicit form as
F(x,y) =0 (1.3)

In a fixed coordinate frame {O; i, j}, the vector equation of curve I" can be written as
I : R =x(i+y@®)j (1.4)

or
R=R(1) (1.5)

Obviously, both the magnitude and direction of R in equation (1.5) vary.

To describe a curve in the vector form, a real vector function, represented by a unit vector
€l(p) with an azimuthal angle ¢ with respect to axis #, measured counterclockwise, is defined
as a vector function of a unit circle (see Fig. 1.1). A plane curve I' can be denoted by the
following vector function:

R = r(pley, (1.6)

In the above equation, the magnitude and direction of vector R depend on the scalar function
r(¢) and the vector function of a unit circle e; ).

Another vector function of a uqit circle ey, = €y, 4x/2) Can I?e obtained by rotating ey,
counterclockwise about k by n/2 (in Chapters | and 2, k is the unit vector normal to the paper
and directed toward the reader).

el(r/n

€l

Figure 1.1 Vector function of a unit circle
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The vector function of a unit circle has the following properties:

1. Expansion
€|(p) = COS @i +sin@j (1.7
€y = — Sin @i +cos pj

2. Orthogonality
For a unit orthogonal right-handed coordinate system {O; ey, ey, k} consisting of
€1(¢)» €11(p)» and k, we have the following identities:

1) ") = 0. ey Xeq =k (1.8)
3. Transformation

€1(g4p) = COS(O + @)i + sin(0 + @)j = cos be, + sin Oeyy,,) (1.9)
€lio+¢) = — SIN(0 + @)i + cos(8 + @) = —sin Oey,) + cos Oeyy

4. Differentiation
dey(y,) deyyy)

— =€) _d(p = —€(p)

i (1.10)

The descriptive form of a curve depends on the chosen parameters and coordinates. A curve
may have many descriptive forms, which differ in complexity if the parameters and reference
coordinates are chosen differently. Below are three examples.

Example 1.1 A circle with radius r and center point C is shown in Fig. 1.2. Write its equation
in both vector and parameter forms.

Solution

The parameter equation of a circle in rectangular coordinates {Q; i, j} can be written as

{xsz”C,os"’ 0 < @ <2n) (E1-1.1)
,"=yC+rsln¢

where (x, y) are the coordinates of the center of the circle in the reference frame {O; i, j}.

J P
:
L)
@
R~ €
i
\0\/

Figure 1.2 A circle
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Alternatively, the same circle can be represented as a vector function of a unit circle:

(E1-1.2)

Example 1.2 An involute is shown in Figs 1.3 and 1.4. Write its equation in both vector and

parameter forms.

Solution

The equation of an involute can be written in three different forms using polar coordinates,
rectangular coordinates, and a vector function of a unit circle, where ry, is the radius of the

base circle.

1. Polar coordinates: r
cos a
O =tana — «a

\
I

T

Figure 1.3  An involute

I

/
J
'
1€
\

()

Figure 1.4 An involute with a unit circle vector function

(E1-2.1)



