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Introduction

Many of the data sets encountered in statistics are two
dimensional and can be represented by a rectangular
numeric table, that is an n by d data matrix x = (z;;) defined
on two sets I and J, sometimes referred to as two-way or
two-mode data. For instance, I may be a set of individuals
(observations, cases, objects and persons) and J may be a set
of variables (measurements, attributes and features). The
data matrix then collects the values taken by all the
variables for each individual. These data may be represented
either as a table of individuals—variables as in the case of
continuous variables, or as a frequency table or contingency
table as in the case of categorical variables. In the following
we examine a number of types of data on which co-clustering
can be performed.

I.1. Types and representation of data

The type of a variable is determined by the set of possible
values that the variable can take. In the following, we briefly
review each type.
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I.1.1. Binary data

Binary variables are widely used in statistics. Examples
include presence—absence data in ecology, black and white
pixels in image processing and the data obtained when
recoding a table of qualitative variables. Data take the form
of a sample x = (x1,...,x,) where x; is a vector (x;1,...,Tiq)
of values z;; belonging to the set {0, 1}. For example, the data
might correspond to a set of 10 squares of woodland in which
the presence (1) or absence (0) of two types of butterflies P1
and P2 was observed. Figure 1.1 illustrates three alternative
ways of presenting these data.

Square P1 P2
1 1
State Frequency
00 1 pP2 1 0
01 2 1
10 2 0
11 3

nip =3 nio =2
ngr =2 ngg =1

[C 2B e NG, BN JUN )
O == OO
OO O -

Figure I.1. Example of binary data

Binary data have been treated in clustering with a large
number of distances, most of which are defined using the
values ni1, nig, no1 and ngy of the table crossing the two
variables. For example, the distances between two binary
vectors i and i’ measured using “Jaccard’s index” and the
“agreement coefficient” can be written, respectively

nii

d(zi, zy) = and d(zi,zv) = n11 + neo-
noo + n1o + No1

I.1.2. Categorical data

Categorical variables, sometimes known as qualitative
variables or factors, are a generalization of binary data to
situations where there are more than two possible values.
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Here, each variable may take an arbitrary finite set of values,
usually referred to as categories, modalities or levels. Like
binary data, categorical data may be represented in different
ways: as a table of individuals—variables of dimension (n,d),
as a frequency vector for the different possible states, as a
contingency table with d dimensions linking the categories or
as a complete disjunctive table where categories are
represented by their indicators. In this last form of
representation, which we will use here, the data are
composed of a sample (x1,...,x,), where x; = (;r{h ;
j: 1,...,d;h: 1,...,mj),with

xf’J =1 if i takes the modality A for the variable j
zl, =0 otherwise,

where m; denotes the number of modalities of the variable j.
In Figure 1.2, a data matrix is shown which consists of a set of
eight individuals described by three categorical variables A, B
and C and its associated complete disjunctive table.

A B C Al A2 B1 B2 B3 C1 C2 C3
1 1 1 1 110 1 0 0 1 00
2 2 1 1 201 1 0 0 1 00
3 1 3 1 31 0 0 0 1 1 00
4 2 2 1 401010100
5 2 2 2 50 1 0 1 0 0 1 O
6 1 3 2 61 0 0 01 0 1 0
T 1 1 3 71 0 1 0 0 0 0 1
8 1 1 3 81 01 0 0 0 01

Figure 1.2. Example of categorical data (left) and its associated
complete disjunctive table (right)

1.1.3. Continuous data

Continuous data are undoubtedly the most current type of
data and can be found in all areas. The structure takes the
form of a relational table where the d columns are continuous
variables and z;; € R. They can be positive or negative with
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different units and variabilities. The measurement unit used
can affect the results of different methods of data analysis
and a normalization or transformation is often necessary. For
instance, a variable can be normalized by scaling its values so
that they lie within a specified range, such as [0, 1]. This aim
can be achieved by the min-max normalization defined by

Tij — min;
max; —min;’

where min; and max; are, respectively, the lowest and the
highest values taken by the variable j. The logarithmic
transformation is also commonly used to pre-process data.
These two transformations are frequently used with
microarray data sets in order to overcome problems of
inaccuracy of measurement or to provide values that are
more easily interpretable. Other transformation techniques
exist and are commonly used. We can cite, for instance, the
z-score normalization defined by

Tij — Ky
Y

04

where p; and o, are, respectively, the mean and the standard
deviation of the variable j. Sometimes, and in order to reduce
the effect of outliers, a variation of this z-score normalization
consists of replacing o; by s;, the mean absolute deviation of
j. Different ways to normalize the data also exist. The user
should pay special attention to this step as it is essential for
obtaining meaningful results.

Besides, most authors distinguish two types of analysis:
Tryon and Bailey [TRY 70] suggest “0-Analysis” for the study
of objects and “V-Analysis” for the study of variables.
According to them, the earliest works relate to the analysis of
objects, which is the classification (taxonomy). The first work
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on the analysis of the variables, from Pearson and Spearman,
is the factor analysis. In other domains, these two types of
analysis are called “P-technique” and “Q-technique”.

In the data previously described, both sets (individuals
and variables) show a strong asymmetry, however in some
situations the two sets play a similar role and can be
interchanged. The contingency table studied in the next
section is the most common example of this type of data.

I1.1.4. Contingency table

There are many situations where we try to study the
association between two categorical variables. A two-way
contingency table is a method for summarizing the two
variables. We can remark that this definition can be easily
extended to more categorical variables. With data of this
kind, the cells, formed by the cross-tabulation of two
categorical variables, I having n categories and J having d
categories, contain the frequency counts of the individuals
belonging to these cells. Contingency tables of this sort can be
found in many distinctive applications. An important
example is information retrieval and document clustering,
where I may correspond to a collection of documents and J to
a set of words, the frequency denotes the number of
occurrences of a word in a document. It is also noteworthy
that the definition of the contingency table can also be
extended to tables where every entry expresses a quantity of
the same matter, in such a way that all of the entries can be
meaningfully summed up to a number expressing the total
amount of matter in the data. Examples of such data are
trade tables showing the money transferred from country i to
country j during a specified period. We now specify the
notation that will be used to study the contingency table.
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Let x = (z4,¢ = 1,...,mj = 1,...,d) be a two-way
contingency table associated with two categorical random
variables that take values in sets I = {l1,...,n} and
J = {1,...,d}. The entries z;; are co-occurrences of row and
column categories, each of which counts the number of
entities that fall simultaneously into the corresponding row
and column categories. The sum of frequencies of row and
column categories, usually called marginals, are denoted by
z; and z; and defined by z; = Zj Ty By = )%y and
T = ZZ—’ ; Tij- Here, we use the usual dot notation to express
the sum with respect to the suffix replaced by a dot. Let
Prj = (pi;) denote the sample joint probability distribution. It
is a matrix of size n x d defined by p;; = 5 where N = z_..
The sample marginal probability distributions are defined by
pi. = >_;pij and p;j = >, p;;. The sample joint probability
distribution p;; can be considered as estimators of the
probabilities &;; that the two categorical random variables
occur in the cell in row ¢ and column j. Table I.1 presents the
form of the contingency table and of the corresponding
sample joint distribution.

1 ...j ...d 1 ...j ...d
1.’EU oo L1 oo- - T1d (X1, lplj - D1y ... P1d|P1.
’L'Slfﬂ SL'ZJ oo Tyd | T, ip'il ---pij <« Did |Ds.
NTpt +++ Tpg +++ Tpd|Tn. nN\Pn1 -+« Pnj -+ Pnd|Pn.

BA wen L wss Log [V P1 ...Pj --.Pdl|l

Table 1.1. Contingency table and sample joint distribution

Sometimes, and specifically in document clustering when
the rows are documents and the columns are words, some
transformations of data are necessary. For instance, the
co-occurrences can be replaced by the tf-idf statistics
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[JON 72]. Different variants are proposed and commonly
used in information retrieval and text mining.

1.1.5. Data representations

Different representations can be associated with the types
of data described in the previous section.

Geometrical representation: for the continuous data, a
classical geometrical representation consists of regarding
these data as n points in d dimensions. In a dual way, a
second and less familiar geometrical representation consists
of regarding the data as d points in n dimensions. The
classical methods, such as principal component analysis and
k-means algorithm, used such representations extensively.
Correspondence analysis [BEN 73b] uses similar geometrical
representations to the contingency table.

Bipartite graph: in all situations, it is possible to associate
the data matrix to a bipartite graph whose vertices are the
elements of the union I U J of sets I and J. For
individuals xvariables table and the contingency table, the
edges of the graph are the set of pairs {(i,j),z € I,j € J}
weighted by corresponding entries z;; in the data matrix. For
binary data, the edges of the graph are the set of pairs (¢, j)
such that z;; = 1 (see, for instance, Figure 1.3). This
representation is frequently considered in the graph
community such as in Web 2.0 tagging data and social
networks.

The methods we are interested in next are clustering
methods and, specifically, the simultaneous clustering of 7
and J. To this end, we will review the motivation of
simultaneous analysis and then introduce co-clustering.
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Bl B2 B3 B4 B5 B6 B7
Al 1 1 1 0 0 1 1
A2 1 1 0 0 0 1 1
A3 0 0 0 1 1 1 1
A4 0 0 0 1 0 1 !

Figure L.3. Binary data and its associated bipartite graph

1.2. Simultaneous analysis
1.2.1. Data analysis

Given a data matrix, the objective of data analysis can be
viewed as the simultaneous analysis of the two sets I and J
to identify underlying structures that may exist between
these two sets. Different approaches such as exploratory
analysis (graphical representation or numerical summary) or
dimension reduction have been used. Principal component
analysis and correspondence analysis are examples of such
methods. This last method given by Benzecri [BEN 73b] is
one of the best known methods that performs analysis
simultaneously on both sets I and J. The data table must be a
contingency table or at least it must have similar properties.
The properties of this approach, especially transition
formulas, allow us to exchange the results on the sets 7 and
J. These properties help us to define a set of barycentric
relations, justifying a simultaneous representation of / and J
and allowing us to simultaneously visualize the proximity
among the elements of I, the elements of J and the elements
of I and J. Finally let us quote the unfolding method of
[COO 50] for which the objective is to represent rank
preference data on a line or a plan. Each individual is
represented by an ideal point such that the relation of order
among the variables, defined by the distances between the
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ideal point and the various variables, is closest to the order
given in the initial data.

Other methods relate to direct processing of the data
matrix. For instance, seriation methods amount to finding a
permutation of rows associated with a permutation of
columns, leading to a reshaped data matrix with a maximum
density of high cell values along the diagonal, in addition to
low value areas in the upper and lower parts. Such
approaches have been used, for instance, in archaeology,
phytosociology, geography and production management.
Caraux [CAR 84] proposed a criterion based on an objective
function with quadratic costs and Bertin [BER 80] proposed a
manual heuristics based on visual densification. Factorial
methods such as correspondence analysis can also be used.
Note that when correspondence analysis gives rise to a
U-shaped effect (Guttman effect) on the first two axes of the
factorial representation, there exists a latent order within the
rows and the columns leading to diagonal band reshaping,
which corresponds to the order of the projections along the
first axis of the rows and columns.

This book is devoted to another group of methods of
simultaneous analysis of two sets by using the notion of
clustering. With a two-way or two-mode data set, clustering
algorithms are often applied to just one mode of the data
matrix, which can be done in a hierarchical or
non-hierarchical way. Among the non-hierarchical methods,
k-means clustering [FOR 65, MAC 67, HAR 75b] is one of the
most popular methods. Contrary to this approach, there is a
relatively new form of clustering that analyzes the two sets
simultaneously. These methods, called direct clustering,
cross-clustering, simultaneous clustering, co-clustering,
biclustering, two-way clustering, two-mode clustering or
two-side clustering, have developed considerably in recent
times.
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1.2.2. Co-clustering

A large number of co-clustering algorithms have been
proposed to date. One of the earliest and most cited
biclustering formulations, known as block clustering, was
proposed by Hartigan [HAR 72, HAR 75a]. He sought to
organize the data table using structures that may be, for
example, defined from classifications on each of the two sets.
This kind of method is sometimes known as direct clustering.
Older works can also be cited. For instance, this problem was
first described formally by Good [GOO 65] who proposed a
technique for the simultaneous clustering of objects and
variables. Fisher [FIS 69] posed the problem of the
simultaneous search for clustering on the row and column
dimensions of a data matrix in a metric way. He defined a
criterion for optimization, but offered no method to solve this
problem. Tryon and Bailey [TRY 70] first clustered the set of
variables using the correlation matrix and then, using a
distance measure across the clusters of variables, clustered
the set of individuals. Dubin and Champoux [DUB 70]
proposed a method that combines the variables into types,
and associates each individual with the types of variables
forming a classification of individuals. More often, the
authors discussed the classification of individuals, describing
at length the choice of a measure of similarity and merely
mentioned the possibility of a classification of variables
without dwelling on how to get there. Anderberg [AND 73]
identified the choice between I and J among the list of the
problems of classification. He considered it reasonable to
classify variables as individuals. He even suggested an
iterative approach in which the classification is done
alternately on the individuals and the variables until the
classifications on both sets are mutually “harmonious”,
believing that such research simultaneously offers
“considerable potential to increase the effectiveness of
automatic classification”.



