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Electrochemical Energy Storage is already big business,
but it will grow dramatically if the technology can be
sufficiently improved—or its costs can be reduced
sufficiently—or novel ways can be found of using it. The
driving force is the inexorable rise of electricity in power-
ing modern life.

Electricity is an ideal bulk-energy vector in almost all
respects, already crucial for twenty-first century life. It
provides lighting, heating, cooling, ventilation, mechanical
power and is essential for all the modern tools of infor-
mation, communications, and entertainment. It can be
moved easily over long distances with relatively little loss.
It is always perfectly clean at the point of use. The end-use
equipment is usually compact, quiet, and cheap to manu-
facture. Freezers and cookers, washing machines and dish
washers, TVs and computers, machine tools and hedge-
trimmers, trains and cars; the list of its uses is endless. If
earlier ages of mankind were best characterized by the
materials we used for our tools, the stone age, bronze age,
iron age etc., then our age is the power-tool age, and our
tools are powered mostly by electricity.

Moreover, electricity will have to extend its reach
much further and become even more important if our
society is to save planet Earth from the climate-changing
consequences of burning too many of our fossil energy
resources too quickly. This is because almost all the
‘alternative’ energy supply technologies, that is, alterna-
tive to fossil fuels, which may allow us to ‘decarbonize’
our energy supply system and mitigate artificial global
warming, are electricity-producing. Nuclear power, wind,
solar, wave, tidal and other ocean energies, coal combus-
tion with CO, capture and sequestration are all basically
electricity producers. There can be no doubt that elec-
tricity must become even more important in the future
than it is now.

T Dr Derek Pooley, CBE FInstP, is now retired after some 15 years working
as an independent consultant on nuclear and other energy technologies,
which followed some 35 years working full-time in energy and materials
technologies. His appointments included chief executive of the UK Atomic
Energy Authority, chief scientist at the UK Department of Energy, chairman
of (Radioactive) Waste Management Technology Ltd, chairman of the Eu-
ropean Union Nuclear Scientific and Technical Committee, president of the
British Nuclear Energy Society (now the UK Nuclear Institute), and member
of the European Union’s Advisory Group on Energy.

@reword by Dr. Derek PooleyD

But electricity has a major Achilles’ heel, the difficulty
of storing it, which makes coping with any variability of
demand and supply a major task in any electricity-driven
economy. Demand has always varied with the patterns of
daily living. Now supply is becoming inherently variable
too, because of the natural variability of wind, solar etc.,
and at the same time becoming inherently less flexible, as
nuclear power generation and complex fossil cycles such as
clean coal with carbon sequestration replace simple fossil
generation. Currently, the electricity grids of most
advanced countries deal with variability via the so-called
dispatchable generators, which can easily be turned up or
down, or on and off. They are mostly fossil-fuelled, so that
dealing with variability effectively ‘locks’ fossil-fuelled
generators into our electricity infrastructure. More use of
electricity storage technologies would allow us to reduce
net variability, make better use of new generator technol-
ogies, lessen fossil fuel dependence, and bring enormous
benefits.

The simplest (and already-widely used) way to store
bulk electricity is with hydro power, especially pumped
hydro, but gravity is a very weak force of nature and storing
bulk electricity this way requires large volumes of water to
be pumped through, or held at, large differences in height.
This can be achieved only in mountainous terrain but even
countries with mountains are often severely limited in the
number of good hydro sites they can use.

In contrast, the chemical-bond forces involved in elec-
trochemistry are inherently much more powerful than
gravity and it seems obvious that electrochemical energy
storage should be used as well as hydro power to store bulk
electricity, especially in countries without mountains.
Electrochemical storage can also be local, perhaps linked to
solar photovoltaic arrays installed on the roofs of individual
houses. Moreover electrochemical energy storage, via
batteries or hydrogen production, might also allow decar-
bonising much of our transport energy use as well and
although road transport’s contribution to CO; emissions is
only half that of electricity generation, it is still very
significant.

Unfortunately, today’s batteries have many and varied
imperfections of their own. Stored energy to weight and/or
cost ratios are frequently too small. Very fast charging is
usually difficult. Deliverable power to stored-energy ratios
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are not sufficient for many applications. The limit on the
number of charge/discharge cycles, after which the battery
performance is too seriously degraded for further use, is
often too small for daily usage cycles. Batteries are
wonderful for flashlights and tablet computers but not yet a
panacea for bulk electricity storage.

Other forms of electrochemical energy storage, such as
the manufacture of hydrogen or methane, also have their
own problems, especially for small-scale or mobile use.
The storage of hydrogen is basically difficult. Its efficient
use requires fuel cells that are still much too expensive for
widespread use, not least because very-expensive platinum
is often needed for the catalysts essential to their operation.

Although the title of Patrick Moseley and Jiirgen
Garche’s book is electrochemical energy storage, it does
recognize possible competition: pumped hydro, flywheels,
thermo-electric, magnetic and compressed gas energy
storage, etc. As Chapter 7 says, the number of possible
storage technology concepts is nearly infinite. The book
also covers potential markets, in particular the increased
need for storage coming from the massive investment in
renewable energy sources.

Foreword by Dr. Derek Pooley

Electrochemical energy storage is without doubt a po-
tential gold mine, but only for those technologists and en-
trepreneurs who can think or invent their way round the
problems that currently limit its widespread use for bulk
energy storage. Moseley and Garche’s book is an infor-
mation mine for those technologists and entrepreneurs—
and for potential users—of where the technologies stand
and how they currently fit the applications foreseen for
them.

In fact, Moseley and Garche have written only some of
the book themselves. In addition they have persuaded a
large number of experts to write about their own fields,
which has the advantage of including what real experts
have to say but inevitably results in a tremendous variety of
styles and approaches. Although written in English, the
expertise and experience deployed are almost exclusively
from Germany; not surprising given the German determi-
nation to decarbonize its economy and the constraints
imposed—and self-imposed—on their energy system.

Dr. Derek Pooley
08/05/2014



rPreface

Patterns of electricity generation and use are changing
markedly during the early part of the twenty-first century.
Driven by concerns over global warming, governments
and corporations around the world are beginning to shift
away from generating plant that depends on fossil fuels
towards a ‘sustainable’ future based on renewable (sun,
wind, hydro-power, etc.), and in some cases nuclear, en-
ergy. The changing nature of the primary generating
equipment brings with it a need to cope with fluctuations
in supply that can only be managed with the aid of some
form of energy storage. There are a wide variety of ap-
plications in view ranging from large-scale supply-side
plant that can help to cope with frequency control, load
leveling, and arbitrage, to small demand-side systems that
assist the use of solar energy that is harvested in the user’s
own home. Simultaneously there are many ways that en-
ergy can be stored, including engineering options that
make use of physical properties (compressed air, fly-
wheels, superconducting magnetic energy storage, etc.)
and electrochemical storage.

This book is a multi-author work and chapter subjects
have been selected to cover the full range of re-
quirements and options for energy storage in future
schemes for generating and using electrical energy in an

N

environmentally friendly manner. The principal focus is
on electrochemical methods of energy storage including
batteries, fuel cells, and supercapacitors although some
consideration is also briefly given to the non-
electrochemical methods mentioned above. Many ex-
amples of schemes in action, or planned, are taken from
Germany, which has probably the most advanced plans
of all the major industrial nations for the introduction of
renewable energies into its inventory of electricity
generating plant. Individual chapters are intended to be
stand-alone and, since they do relate to one central
theme, a small amount of subject overlap has been un-
avoidable. In particular, the role of storage as the key to
enable the introduction of renewable sources of energy
to be effective is stressed.

The exploitation of hydrogen as an energy storage
vector is dealt with in three chapters that cover the
following three subtopics: hydrogen generation, hydrogen
storage, and hydrogen conversion. The hydrogen system is
considered from both the R&D and the industrial view-
points and, again, there is a small amount of overlap
between chapters at the boundaries of the subtopics.

Patrick T. Moseley and Jiirgen Garche
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