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Preface

The microwave and RF design engineer always seeks to develop a design that will
meet specifications the first time that the circuit is fabricated. To do so requires that
as many elements and phenomena as possible associated with the control devices
and circuit be accurately modeled. In the case of the microwave and RF semiconduc-
tor control circuits, accurate modeling of the solid-state control components over
frequency, voltage, current, and power is key to successful control system design.
This book was written to provide the RF and microwave design engineer insight
into the physical operation and modeling of PIN diodes and field-effect transistors
(FETs) as control components and their use in microwave and RF control circuits.
This insight I hope will be of some aid to design engineers to help them wisely
choose and adapt device and circuit parameters during design optimization for
best circuit performance.

The book is organized in the following manner. Chapters 1 and 2 cover fun-
damental material that provide the foundation for better understanding of the
control device models introduced in later chapters. These two chapters cover the
basics of control circuits, noise theory, device packaging issues, thermal behavior,
and nonlinear device theory. Forward and reverse bias operation of the PIN diode
in both switch states is the subject of Chapters 3 and 4. Chapter 3 focuses on the
theory of operation of the PIN diode as an RF and microwave control element. The
linear modeling of this operation is extensively covered. Chapter 4 expands on this
modeling of the linear operation of the PIN diode and presents modeling of the
device’s nonlinear behavior and the subsequent introduction of unwanted signals
into the circuit. Chapters § and 6 present the theory, operation, and modeling of
FET-based control devices, with the metal-oxide-semiconductor FET (MOSFET)
and metal-semiconductor FET (MESFET) being the two main focus technologies.
Because the operation of the MOSFET and MESFET is fundamentally different, the
operation and modeling of each device is covered in separate chapters. Chapter §
covers the linear and nonlinear on- and off-state operation of the silicon MOSFET,
focusing on the n-channel device. Chapter 6 covers the linear and nonlinear opera-
tion of the MESFET: traditional MESFETs and high electron mobility MESFET
(HEMTs:) in both operational states is discussed. The final two chapters, Chap-
ters 7 and 8, present example control circuit simulations based on the PIN diode
and FET models presented in the earlier chapters and provide a basis for further
exploration of control device operation. The author, with the gracious agreement
of Artech House, has placed simulation files and other support resources and files
described in more detail in Chapter 1 on the web at a SourceForge repository:
http://sourceforge.net/projects/pindiodemodel/files/
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Introduction

1.1

Historical Perspective and Background

The modern era of semiconductor radio frequency (RF) and microwave control
began more than a half-century ago, soon after the invention of the transistor.
For the previous 50 years, semiconductor devices were used at RF and microwave
frequencies, using such fragile devices as “cat whiskers,” and point contact diode
technologies [1-5]. With the advent of more reliable commercial semiconductor
diodes in the 1950s, theoretical and applied research for RF and microwave control
applications increased dramatically. At the time, both germanium and silicon diodes
were available, with the most famous being the n-type germanium 1N263 and the
p-type silicon 1N23B [6]. Interestingly, the 1N263 exhibited superior performance
when used as a waveguide switch compared with the 1N23B [7]. This superior
performance was attributed to the difference in the hole and electron mobilities
between the two semiconductor and doping types [6, 7]. Garver published a series
of papers in the 1950s and 1960s that described the theory and operation of these
waveguide switching diodes in great detail and provided a solid foundation for fur-
ther work on the subject [7-9]. Uhlir described the concept of using a PIN diode, a
relatively new type of diode structure at the time, as a variable resistor at RF and
microwave frequencies in 1958 [10, 11]. The PIN diode was first introduced as a
high-voltage rectifier but was found to be a poor rectifier above a few megahertz
[11]. Further investigation, however, showed the diode to have controllable imped-
ance at very high frequencies [11]. This opened up the possibility of accurate control
of RF and microwave signals with variable dc forward bias; this ability to vary the
amplitude gave rise to the term variolosser [12]. White wrote the first and what is
still considered to be one of the standard microwave semiconductor control texts
on applications of PIN diodes [13]. Research on microwave and RF control devices
continued during this time on not just discrete PIN diodes. One of the first silicon
monolithic microwave integrated circuits (MMIC) was a PIN diode transmit-receive
switch [14]. Since that time, control circuit designs using PIN diodes in both discrete
and monolithic form for RF and microwave control applications have expanded
from these early radar applications to wide-ranging applications in personal and
infrastructure communication systems and even medical applications, such as in
magnetic resonance imaging (MRI) scanners.

From the 1950s onward, transistors were being intensely investigated for many
uses, including RF and microwave control. The first usable microwave bipolar tran-
sistor was introduced in 1965, and steady progress in frequency and performance
has continued to this day. The use of field effect transistors (FETs) for microwave

1



Introduction

applications started in 1971; Liechti published an excellent review of the develop-
ment history of FETs up to 1976 [15]. Garver, who published extensively in the
1950s and 1960s on RF and microwave diode control, in 1979 discussed using FETs
instead of diodes for RF and microwave control [9]. The next year, Ayasli and col-
leagues developed a gallium arsenide-based (GaAs) monolithic FET transmit-receive
switch, followed up two years later by a switch with higher power handling [16,
17]. The first RF and microwave control FETs were of the metal-semiconductor
(MESFET) type, but as digital complementary metal-oxide-semiconductor (CMOS)
FETs improved in performance due to decreasing feature size, MOSFETs started
to play a larger role in the control area. Since the MESFET and MOSFET are easy
to include with other digital and analog circuitry on an integrated circuit, their
use has important impact on fully monolithic integrated communication and other
system-on-chip (SoC) solutions.

Increase in circuit and system complexity requires the designer to use computer
tools to reduce design time and increase the probability of first-pass design suc-
cess. Computer design tools are only as good as the models they use, and modeling
of semiconductor control devices is no exception. This book seeks to provide the
theoretical background governing the operation of these semiconductor control
devices and to link this theoretical understanding to the computer models that aid
in simulating the device’s behavior at the circuit level. It is hoped that the reader
will gain better insight into the physical operation of these devices during the design
process and understand the interplay between device model parameters and their
impact on the control circuit performance. The next sections in this chapter cover
fundamental control concepts using a simple switch and other control circuits as
examples for a more general overview of device modeling. The later sections in the
chapter generalize the discussion to include other control circuits such as attenua-
tors and phase shifters.

1.1.1  Simplified Switch Concepts

The basic concept of the switch depends on the location of the control element and
its impedance Zc in the control circuit. For a series-connected switch element,
low impedance Z,, is required for the low loss or on-state, whereas a high imped-
ance Zyg, is required for the high loss or off-state. For a shunt-connected switch
element, the opposite is true: a high impedance is required for the on-state and a
low impedance for the off-state. In an ideal series-connected mechanical switch,
these two impedance states would correspond to the switch contacts touching with
very small resistance Z,,,, = Ron between the contacts; the open switch would then
have infinite resistance. However, while this may be true at dc, in the open-switch
condition, the two air-separated contacts (or vacuum or other gas, depending on
the switch type) would create a capacitance Cgr that is a function of the area and
the contact separation distance. This capacitance exhibits a reactance of 1/j0Cqgx
(w is the radian frequency) and would show a frequency dependent loss in the off-
state, with the loss decreasing with increasing frequency (although still infinite at
dc, unless the dc bias voltage were large enough to cause breakdown in the medium
between the contacts). In the off-state, there will be a small resistance in series with
this capacitance, Ropp, because of the finite conductivity and dimensions of the



