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Preface

Swarm intelligence and bio-inspired computation have become increasingly popu-
lar in the last two decades. Bio-inspired algorithms such as ant colony algorithm,
bat algorithm (BA), cuckoo search (CS), firefly algorithm (FA), and particle swarm
optimization have been applied in almost every area of science and engineering
with a dramatic increase in the number of relevant publications. Metaheuristic algo-
rithms form an important part of contemporary global optimization algorithms,
computational intelligence, and soft computing.

New researchers often ask “why metaheuristics?”, and this indeed is a profound
question, which can be linked to many aspects of algorithms and optimization,
including what algorithms to choose and why certain algorithms perform better
than others for a given problem. It was believed that the word “metaheuristic” was
coined by Fred Glover in 1986. Generally, “heuristic” means “to find or to discover
by trial and error.” Here, “meta-" means “beyond or higher level.” Therefore, meta-
heuristic can be considered as a higher-level strategy that guides and modifies other
heuristic procedures to produce solutions or innovations beyond those that are nor-
mally achievable in a quest for local optimality. In reality, we are often puzzled
and may be even surprised by the excellent efficiency of bio-inspired metehauristic
algorithms because these seemingly simple algorithms can sometime work like a
“magic,” even for highly nonlinear, challenging problems. For example, for multi-
modal optimization problems, many traditional algorithms usually do not work
well, while new algorithms such as differential evolution (DE) and FA can work
extremely well in practice, even though we may not fully understand the underly-
ing mechanisms of these algorithms.

The increasing popularity of bio-inspired metaheuristics and swarm intelligence
(SI) has attracted a great deal of attention in engineering and industry. There are
many reasons for such popularity, and here we discuss three factors: simplicity,
flexibility, and ergodicity. Firstly, most bio-inspired algorithms are simple in the
sense that they are easy to implement and their algorithm complexity is relatively
low. In most programming languages, the core algorithm can be coded within a
hundred lines. Second, these algorithms, though simple, are flexible enough to deal
with a wide range of optimization problems, including those that are not solvable
by conventional algorithms. Third, bio-inspired algorithms such as FA and CS can
often have high degrees of ergodicity in the sense that they can search multimodal
landscape with sufficient diversity and ability to escape any local optimum. The
ergodicity is often due to some exotic randomization techniques, derived from nat-
ural systems in terms of crossover and mutation, or based on statistical models
such as random walks and Lévy flights.
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As most real-world problems are nonlinear and multimodal with uncertainty,
such complexity and multimodality may imply that it may not be possible to find
the true global optimality with a 100% certainty for a given problem. We often
have to balance the solution accuracy and computational cost, leading to a (possi-
bly aggressive) local search method. Consequently, we may have to sacrifice the
possibility of finding the true global optimality in exchange of some suboptimal,
robust solutions. However, in practice, for the vast majority of cases, many bio-
inspired algorithms can achieve the true global optimality in a practically
acceptable fixed number of iterations, though there is no guarantee for this to be
the case all the time.

The history of bio-inspired computation and SI has spanned over half a century,
though the developments have been sped up in the last 20 years. Since the emer-
gence of evolutionary strategies in the 1960s and the development of genetic algo-
rithms (GA) in the 1970s, a golden age with major progress in modern bio-inspired
computing is the 1990s. First, in 1992, Marco Dorigo described his innovative
work on ant colony optimization (ACO) in his PhD thesis, and in the same year,
J.R. Koza published a treatise on genetic programming. Then, in 1995, J. Kennedy
and R. Eberhart developed particle swarm optimization (PSO), which essentially
opened up a new field, now loosely named as SI. Following this in 1996 and 1997,
R. Storn and K. Price published their DE. At the turn of the twenty-first century,
Zong Woo Geem et al. developed the harmony search in 2001. Around 2004 to
2005, bee algorithms emerged. S. Nakrani and C. Tovey proposed the honey bee
algorithm in 2004, and Xin-She Yang proposed the virtual bee algorithm in 2005.
D.T. Pham et al. developed their bee algorithms and D. Karaboga formulated the
artificial bee colony all in 2005. In 2008, Xin-She Yang developed the FA for mul-
timodal optimization, and in 2009, Xin-She Yang and Suash Deb developed CS. In
2010, Xin-She Yang first developed the BA, and then Xin-She Yang and S. Deb
developed the eagle strategy. More bio-inspired algorithms started to appear in
2012, including krill herd algorithm (KHA) by A.H. Gandomi and A.H. Alavi,
flower pollination algorithm by Xin-She Yang, and wolf search algorithm by Rui
et al. As we can see, the literature has expanded dramatically in the last decade.

Accompanying the rapid developments in bio-inspired computing, another
important question comes naturally: Can an algorithm be intelligent? The answers
may depend on the definition of “intelligence” itself, and this is also a debating
issue. Unless a true Turing test can be passed without any doubt, truly intelligent
algorithms may be still a long way to go. However, if we lower our expectation to
define the intelligence as “the ability to mimic some aspects of human intelligence”
such as memory, automation, and sharing information, then many algorithms can
have low-level intelligence to a certain degree. First, many bio-inspired algorithms
use elitism and memory to select the best solution or “survival of the fittest,” and
then share this information with other agents in a multiple agent system.
Algorithms such as artificial neural networks use connectionism, interactions,
memory, and learning. Most SI-based algorithms use rule-based updates, and they
can adjust their behavior according to the landscape (such as the best values, gradi-
ents) in the search space during iterations. To some extent, they can be called
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“smart” algorithms. Obviously, truly intelligent algorithms are yet to appear in the
future. Whatever the forms such intelligent algorithms may take, it would be the
holy grail of artificial intelligence and bio-inspired computation.

Despite the above recent advances, there are many challenging issues that
remain unresolved. First, there are some significant gaps between theory and prac-
tice, concerning bio-inspired computing and optimization. From numerical experi-
ments and applications, we know bio-inspired algorithms often work surprisingly
well; however, we do not quite understand why they are so efficient. In fact, it
lacks solid theoretical proof of convergence for many bio-inspired algorithms,
though the good news is that limited results do start to appear in the literature.

In addition, for most algorithms, we do not know how parameters can exactly
control or influence the performance of an algorithm. Consequently, a major chal-
lenge is the tuning of algorithm-dependent parameters so as to produce the optimal
performance of an algorithm. In essence, parameter tuning itself is an optimization
problem. At present, this is mainly carried out by trial and error, and thus very time
consuming. In fact, parameter tuning is a very active research area which requires
more research emphasis on both theory and extensive simulations.

On the other hand, even though we have seen a vast range of successful applica-
tions, however, in most applications, these are still limited to small-scale problems
with the number of design variables less than a few dozens or a few hundreds. It is
very rare to see larger-scale applications. In reality, many optimization problems may
be very large scale, but we are not sure how bio-inspired algorithms can deal with
such large-scale problems. As most problems are often nonlinear, scalability may also
be a problem, and computational time can be a huge barrier for large-scale problems.

Obviously, there are other challenging issues such as performance measures,
uncertainty, and comparison statistics. These challenges also provide golden oppor-
tunities for researchers to pursue further research in these exciting areas in the
years to come.

This book strives to provide a timely snapshot of the state-of-the-art develop-
ments in bio-inspired computation and SI, capturing the fundamentals and applica-
tions of algorithms based on SI and other biological systems. In addition to review
and document the recent advances, this book analyze and discuss the latest and
future trends in research directions so that it can help new researchers to carry out
timely research and inspire readers to develop new algorithms.

As the literature is vast and the research area is very broad, it is not possible to
include even a good fraction of the current research. However, the contributions by
leading experts still contain latest developments in many active areas and applica-
tions. Topics include overview and analysis of SI and bio-inspired algorithms,
PSO, FA, memetic FA, discrete FA, BA, binary BA, GA, CS and modified CS,
KHA, artificial plant optimization, review of commonly used test functions and
labor division in ACO. Application topics include traveling salesman problems,
feature selection, graph coloring, combinatorial optimization, music composition,
mesh generation, semantic web services, optimization alternatives generation, pro-
tein folding, berth allocation, data mining, structural optimization, inventory man-
agement, and others.
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It can be expected that this edited book can serve as a source of inspiration for
novel research and new applications. Maybe, in the not very far future, some truly,
intelligent, self-evolving algorithm may appear to solve a wide range of tough opti-
mization more efficiently and more accurately.

Last but not the least, we would like to thank our Editors, Dr Erin Hill-Parks,
Sarah E. Lay, and Tracey Miller, and the staff at Elsevier for their help and
professionalism.

Xin-She Yang, Zhihua Cui, Renbin Xiao,
Amir Hossein Gandomi and Mehmet Karamanoglu
February 2013
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