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Preface

The extensive development of the subject of this book between the first edition
in 1961 and the second edition in 1970 has progressed unabated in the past decade
and is reflected in a further expansion of references and authors cited in this third
edition. Even so, the present edition inevitably represents a smaller proportion of
the total literature than did those preceding.

The chapters remain the same as in the second edition. As before, the emphasis
is still on linear viscoelasticity of amorphous polymers. Although the phenomena
of nonlinear viscoelasticity are given more attention, this subject and the properties
of crystalline and glassy polymers are treated somewhat superficially and the reader
is referred to other treatises and reviews, with the admonition that current devel-
spments may lead to a clearer understanding within a few years.

There have been a few minor changes in symibols, and the notation conforms to
the recommendations of the Society of Rheology published in 1976. Numerical
values are still given mostly in cgs units, but the equivalent values in S| units are
frequently added.

As before, I am grateful to my present and former students and associates at the
University of Wisconsin for their generous contributions to this edition in the form
s general perspective and specific advice. Their researches cited here were sup-
ported in part by the agencies named in the preface to the first edition and aiso by
tte Nationa. Institutes of Health and the NATO Research Grants Pregramme.

Efforts to prevent this revision from being too far out of date on the day of pub-
lication have been greatly facilitated by unpublished data and other information
generously made available by Professors D. J. Plazek, W. W. Graessley, R. B. Bird,
A. J. Kovacs, J. L. Schrag, C. W. Macosko, N. W. Tschoegl, and G. C. Berry, and
by Drs. M. Doi, O. Kramer, C. R. Taylor, and D. S. Pearson. Different portions
of the manuscript were read by Professors R. B. Bird, N. W. Tschoegl, D. J. Plazek,
J. L. Schrag, W. W. Graessley, J. J. Aklonis, A. S. Lodge, and A. Peterlin; and Drs.

R. A. Dickie, D. J. Massa, and T. L. Smith. I am greatly indebted to them for their -

valuable advice. The manuscript was painstakingly typed by Miss Paulette A.

Schlomann.
JOoHN D. FERRY

Madison, Wisconsin
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Preface to
the First Editton

It 15 interesting to observe the evolution of science in microcosm by following
the development of a highly specialized fragment of it, especially one which cuts
acrose several conventional fields, such as the subject of this book. The familiar
patfern of alternation between experimental and theoretical advances is apparent.
Underlying each advance is a conceptual scheme which is an arbitrary and sub-
jective choice of one investigator or school; in this conceptual abstraction, attention
is focused on certain aspects of observed behavior that are believed to be particularly
important or useful to describe, and other aspects are ignored. The conceptual
scheme leads to a set of characteristic physical quantities which can be defined,
measured, and correlated by theoretical relationships.

~iaturally, in the spontaneous development of the subject, alternative conceptual
schemes arise, each with its favored definitions, parameters, and terminology.
Sometimes the languages are readily translatable, in other cases with extreme
difficuity. In the course of time, a majority of the scientific community may adopt
one scheme, and for a while a degree of order prevails.

The subject of the viscoelasticity of polymers has not quite reached this last stage
of development, but it has matured to the point where some kind of summarizing
treatment seems desirable. The phenomenological theory of linear viscoelasticity
is essentially complete. The molecular origin of soine aspects of the viscoelastic
behavior peculiar to polymers is semi-quantitatively understood, as are their de-
pendences on temperature, molecular weight, concentration, and other variables.
Moreover, the relationships are well enough understood to permit rule-of-thumb
predictions of behavior in practical situations to a far greater extent, I believe, than
t1as been exploited up to now. Other aspects such as the effects of molecular weight
distribution and the properties of highly cross-linked, glassy, and crystailine
polymers are very poorly understood, but the direction which further experimental
snd theoretical developments should take is fairly clear.

This book was written with several objectives in view. First, [ tave tried to as-
semble the working information’ needed by investigatos in the fieid for making
:reasurements and interpreting data—information which has hitherto been scat-
tered in dozens of separate publications. A uniform notation has been used, most

X



X PREFACE TO THE FIRST EDITION

of it in accordance with the recommendations of the Society of Rheology. Secon,
the exposttion is | hope straightforward enough so that new investigators, of whor
there are inanv in industrial laboratories encountering the phenomena of polymer
viscoelastictty withc:ut any previous experience, can use it to familiarize themseives
with the subject. Third, certain needs for further theoretical and experimental
advances are pointed out. Finally, a few examples of practical applications are given
in the hope that these will stimulate a much wider use of approximate intercon-
versions of viscoelastic functions, and reduced variables describing effects of
temperature, pressure, and concentration, to predict viscoelastic behavior and
correlate it with other properties under a wide variety of conditions.

I owe a profound debt to my former students and associates who, over the years,
have participated in studies of the viscoelastic properties of polymers at the Uni-
versity of Wisconsin, and whose collective experience has contributed greatly to
writing this book. The work cited from our own laboratory was supported by the
Research Committee of the Graduate School of the University of Wisconsin; the
Ordnance Corps, Department of the Army; National Science Foundation; Office
of Naval Research; Allegany Ballistics Laboratory; and Union Carbide Chemicals
Company.

In addition to the many citations of published investigations from other iabo-
ratories, unpublished data and theoretical calculations were generously made
available by the late Professor E. Jenckel and by Drs. A. Kovacs, J. Lamb, R. S.
Marvin, A. R. Payne, and K. Ninomiya.

Most of the manuscript was written during tenure of a National Science Foun-
dation Senior Postdoctoral Fellowship at the University of Brussels in 1959.1am
deeply indebted to Professor L. de Brouckére for the kind hospitality of the Labo-

ratoire de Chimie Analytique et Minérale at the University, and to European Re-
search Associates for the use of library facilities. Different chapters were read by
Professor Edwin R. Fitzgerald of Pennsylvania State University and by Drs. Robert *
F. Landel, Thor L. Smith, Robert S. Marvin, Kazuhiko Ninomiya, Donald J.
Plazek, Malcolm L. Williams, and André J. Kovacs; I am grateful for their con-
structive criticism. The proof of the entire book was painstakingly read by Professor
Fitzgerald and Dr. Plazek.

JoHN D. FERRY

December, 1960
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