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Preface

First as a student and later as an engineer, I have always been involved in the calculation of transfer
functions. When designing power electronics circuits and switch mode power supplies, I had to apply
my analytical skills on passive filters. I also had to linearize active networks when I needed the
control-to-output dynamic response of my converter. Methods to determine transfer functions
abounded and there are numerous textbooks on the subject. I started in college with mesh-node
analysis, and at some point ended up using state variables. If all paths led to the correct result, I often
struggled rearranging equations to make them fit a friendly format. Matrices were useful for
immediate numerical results but, when trying to extract a meaningful symbolic transfer function,
I was often stuck with an intractable result. What matters with a transfer function formula is that you
can immediately distinguish poles, zeros and gains without having to rework the expression. This is
the idea behind the term low-entropy, a concept forged by Dr. Middlebrook.

Simulation gives you an idea where poles and zeros hide by interpreting the phase and magnitude
plots with minimum-phase functions. However, inferring which terms really affect a pole or a zero
position from a Bode plot is a different story. Fortunately, if the transfer function is written the right
way, then you can immediately identify which elements contribute to the roots and assess how they
impact the dynamic response. As some of these parasitics vary in production or drift with temperature,
you have to counteract their effects so that reliability is preserved during the circuit’s life. The typical
example is when you are asked to assess the impact of a parasitic term variation on a product you have
designed: if a new capacitor or a less expensive inductor is selected by the buyers, will production be
affected? Is there a chance that stability will be jeopardized in some operating conditions?
Implementing the classical analysis method will surely deliver a result describing the considered
circuit, but extracting the information you need from the final expression is unlikely to happen if the
equations you have are disorganized or in a high-entropy form.

This is where Fast Analytical Circuit Techniques (FACTSs) come into play. The acronym was
formed by Dr. Vatché Vorpérian, who formalized the technique you are about to discover here.
Before him, Dr. Middlebrook published numerous papers and lectured on his Extra-Element
Theorem (EET), later generalized to the N extra-element theorem by one of his alumni. Since
Hendrik Bode in the 40’s, authors have come up with techniques aiming to simplify linear circuit
analysis through various approaches. All of them were geared towards determining the transfer
function at a pace quicker than what traditional methods could provide. Unfortunately, while
traveling and visiting customers world-wide, I have found that, despite all the available documenta-
tion, FACTs were rarely adopted by engineers or students. When describing examples in my seminars
and showing the method at work in small-signal analysis, I could sense interest from the audience
through questions and comments. However, during the discussions I had later on with some of
the engineers or students, they confessed that they tried to acquire the skill but gave up because of the



xii Preface

intimidating mathematical formalism and the complexity of the examples. If one needs to be rigorous
when tackling electrical analysis, perhaps a different approach and pace could make people feel at
ease when learning the method. This is what I strived to do with this new book, modestly shedding a
different light on the subject by progressing with simple-to-understand examples and clear explan-
ations. As a student, I too struggled to apply these fast analytical circuits techniques to real-world
problems; as such, I identified the obstacles and worked around them with success. Thus, the seeds for
this book were sown.

This book consists of five chapters. The first chapter is a general introduction to the technique,
explaining what transfer functions are and how time constants characterize a circuit. The second
chapter digs into transfer function definitions and polynomial forms, introducing the low-Q
approximation, and how to organize 2™ and 3™-order denominators or numerators. The third
chapter uses the superposition theorem to gently introduce the extra-element theorem. Numerous
examples are given to illustrate its usage in different 1*'-order configurations. The fourth chapter deals
with the 2-extra element theorem, generalized and applied to 2"'-order networks. Numerous
examples illustrated with Mathcad® and SPICE punctuate the explanations. Finally, the fifth chapter
tackles 3"- and 4™-order circuits, all illustrated with examples. Each chapter ends with 10 fully
documented problems. There is no secret; mastering a technique requires patience and practice, and
I encourage you to test what you have learned after each chapter through these problems.

I have adopted the same casual writing style already used in my previous books, as readers’
comments show that the way I present things better explains complex matters. Please let me know if
my approach still applies here and if you enjoy reading this new book. As usual, feel free to send me
your comments or any typos you may find at cbasso@wanadoo.fr. I will maintain an errata list in my
personal webpage as I did for the previous books (http:/cbasso.pagesperso-orange.fr/Spice
.htm). Thank you, and have fun determining transfer functions!

Christophe Basso
May 2015
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1

Electrical Analysis — Terminology
and Theorems

This first chapter is an introduction to some of the basic definitions and terms you must understand in
order to perform electrical analysis with efficiency and speed. By electrical analysis, I imply finding
the various relationships that characterize a particular electrical network. To excel in this field, as in
any job, you need to master a few tools. Obviously, they are innumerable and I am sure you have
learned a plethora of theorems during your student life. Some names now seem distant simply because
you never had a chance to exercise them. Or you actually did but implementation was so obscure and
complex that you left quite a few of them aside. This situation often happens in an engineer’s life
where real-case experience helps clean up what you have learned at school to only retain techniques
that worked well for you. Sometimes, when what you know fails to deliver the result, it is a good
opportunity to learn a new procedure, better suited to solve your current case. In this chapter, I will
review some of the founding theorems that I extensively use in the examples throughout this book.
However, before tackling definitions and examples, let us first understand what the term transfer
Junction designates.

1.1 Transfer Functions, an Informal Approach

Assume you are in the laboratory testing a circuit encapsulated in a box featuring two connectors: one
for the input, the second for the output. You do not know what is inside the box, despite the transparent
case in the picture! You now inject a signal with a function generator to the input connector and
observe the output waveform with an oscilloscope. Using the right terminology, you drive the circuit
input and observe its response to the stimulus. The input waveform represents the excitation denoted
u and it generates a response denoted y. In other words, the excitation variable propagates through the
box, undergoes changes in phase, amplitude, perhaps induces distortion etc. and the oscilloscope
reproduces the response on its screen.

The waveform displayed by the oscilloscope is a time-domain graph in which the horizontal axis x
is graduated in seconds while the vertical axis y indicates the signal amplitude (positive or negative).
Its dimension depends on the observed variable (volts, amperes and so on). The input waveform is
denoted in lower case as itis an instantaneous signal, observed at a time — the instant t— u(t). A similar
notation applies to the output signal, y(#). In Figure 1.1, you see a low duty ratio square-wave injected
in the box engendering a rather distorted waveform on the output.

Linear Circuit Transfer Functions: An Introduction to Fast Analytical Techniques, First Edition. Christophe P. Basso.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.



2 Linear Circuit Transfer Functions

y()

excitation
response

Figure1.1 A black box featuring an input and an output signal. What is the relationship linking output and input
waveforms?

This ringing signal tells us that the box could associate resonant elements, probably capacitors and
inductors but not much more than that. If we change the excitation, what type of shape will we obtain?
Knowing what is inside the box will let us predict its response to various types of excitation signals.

There are several available ways to characterize an electrical linear circuit. One of them is called
harmonic analysis. The input signal is replaced by a sinusoidal waveform and you observe how the
stimulus propagates through the box to form the response. This is shown in Figure 1.2:

The excitation level must be of reasonable amplitude — understand small — so that the response
signal is not distorted. The input signal dc bias must also be set accounting for the physical constraints
imposed by the active circuit so that upper- or lower-rail saturation is avoided. In other words, the box
internal circuitry is not overdriven and remains linear during the analysis. Linearity is confirmed if the
output signal is sinusoidal with the same frequency as the input sine and only varies in amplitude and
phase while you ac-sweep the network. This is a so-called small-signal analysis. In the Laplace
domain, you perform such harmonic analysis when you set s = jw in which @ = 27z f represents the
angular frequency expressed in radians per seconds (rads/s). Laplace analysis with s = jw applies to
linear circuits only.

Should you increase the input signal amplitude or change the operating bias point, slewing or
clipping may happen. In this case, you explore the box large-signal or nonlinear response. This is a
characterization different than the small-signal approach and it offers another insight into the circuit
operation. Let us keep linear and once the right input amplitude is found, i.e. a signal of comfortable
amplitude is observed on the oscilloscope screen, the frequency is varied step by step while output
amplitude/phase couples are recorded in an array. At each frequency point f, we store the ratio of the
response amplitude Y(f) in volts to the excitation amplitude U(f) in volts also. At each frequency
point f, we save the phase information linking both input and output waveforms. As U and Y are
complex variables affected by a magnitude and a phase, we can write:

Y(s)
A\'(s)—m (1.1)
A, represents a transfer function, a mathematical relationship linking a response signal Y to an
excitation signal U. Please note that the excitation signal U resides in the transfer function

excitation response

y (1)

Figure 1.2 The black box is now driven by a sinusoidal stimulus for a small-signal analysis.



