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PREFACE

Paris 18th, 1914: The day was, by all accounts, a sunny and pleasant one, the blue
sky a perfect backdrop for spectacle. A large crowd had gathered along the banks of
the Seine, near the Argenteuil bridge in the city’s northwestern fringes, to witness
the Concours de la Sécurité en Aéroplane, an aviation competition organized to
show off the latest advances in flight safety. Nearly sixty planes and pilots took
part, demonstrating an impressive assortment of techniques and equipment. Last
on day’s program, flying a Curtiss C-2 biplane, was a handsome American pilot
named Lawrence Sperry. Sitting beside him in the C-2's open cockpit was his French
mechanic, Emil Cachin. As Sperry flew past the ranks of spectators and approached
the judges’ stand, he let go of the plane’s controls and raised his hands. The crowd
roared. The plane was flying itself!

Carr (2014, Chapter 3)

This was, a hundred years ago, one of the first demonstrations of adaptation
and control implemented in hardware at that time. Since then, adaptive
control has been one of the main problems studied in control theory.
The problem is well understood, yet it has a very active research frontier
(cf. Chapter 2). This monograph focuses on a specific subclass of adaptive
control, namely learning-based adaptive control.

As we will see in Chapter 2, adaptive control can be divided into three
main subclasses: the classical model-based adaptive control, which mainly
uses physics-based models of the controlled system; the model-free adaptive
control, which is solely based on the interaction of the controller with
the system; and learning-based adaptive control, which uses both model-
based and model-free techniques to design flexible yet fast and stable (i.e.,
safe) adaptive controllers. The basic idea of learning-based modular adaptive
control that we introduce in this monograph is depicted in Fig. A. We see
that there are two main blocks: the model-based block and the model-
free block. The model-based part is concerned with ensuring some type
of stability during the learning process. The model-free (i.e., learning) part
is concerned with improving the performance of the controllers by tuning
online some parameters of the model-based controllers. Due to the modular
design, the two blocks can be connected safely, that is, without jeopardizing
the stability (in the sense of boundedness) of the whole system.

We argue that one of the main advantages of this type of adaptive
controllers, compared to other approaches of adaptation, is the fact that
they ensure stability of the system, yet they take advantage of the flexibility
of model-free learning algorithms. Model-based adaptive controllers can be

vii



viii Preface

Parameters' estimates
Igains tuning

Measurements

Model-free
block

Performance

Fig. A Block diagram of the modular learning-based adaptive control.

very efficient and stable. However, they impose many constraints on the
model, as well as on the uncertainties’ structure (e.g., linear vs nonlinear
structures, etc.). Model-free adaptive controllers, on the other hand, allow
a lot of flexibility in terms of model structures because they do not rely
on any model. However, they lack some of the stability guarantees which
characterize model-based adaptive controllers. Furthermore, model-free
adaptive algorithms have to learn the best control action (or policy) over
a large domain of control options because they do not take advantage of
any physical knowledge of the system; that is, they do not use any model of
the system. Learning-based adaptive controllers strike a balance; they have
some of the stability guarantees due to their model-based part, but also are
expected to converge faster to the optimal performance, compared to their
model-free counterparts. This is due to the fact that they use some initial
knowledge and modeling of the system, albeit uncertain or incomplete.

To make the book easier to read, without the need to refer to other
sources, we will recall in Chapter 1 the main definitions and tools used
in control theory. This includes the classical definitions of vector spaces,
Hilbert spaces, invariant sets, and so on. Other useful stability concepts
like Lyapunov, Lagrange stability, and input-to-state stability (ISS) will also
be recalled. Finally, some important notions of passivity and nonminimum
phase will be presented as well.
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In Chapter 2, we will present a general survey of the adaptive control
field. We will classify some of the main relevant results from a few subfields
of adaptive control theory. The main goal of this chapter is to situate the
results of this monograph in the global picture of adaptive control, so that
the reader can better understand where our results stand, and how they
differ from other works.

The remaining chapters are more technical because they are about more
specific results of learning-based adaptation, which we have been working
on for the past 5 years.

Starting with Chapter 3, we focus on a very specific problem in
learning-based adaptation, namely the problem of iterative feedback tuning
(IFT). The main goal of IFT is to automate the tuning of feedback gains for
linear or nonlinear feedback controllers. We will first give a brief overview
of some IFT research results, and then introduce our work in this field.
More specifically, we will focus on extremum seeking-based nonlinear
IFT. Throughout this book, we will often focus on nonlinear models
(maybe with the exception of Chapter 6) because we believe that, with
some simplifications, the nonlinear results can easily be applied to linear
models. We will not, however, explicitly derive such simplifications; we
leave it to the interested reader to apply the techniques presented here to
linear plants.

Chapter 4 presents the general formulation of our modular extremum
seeking-based adaptive control for nonlinear models. We will start this
chapter with the case of general nonlinear models, without imposing any
structural constraints on the model’s equations or on the uncertainties
(besides some basic smoothness constraints). For this rather general class
of models we will argue that, under the assumption of input-to-state
stabilizability (by feedback), we can design modular learning-based indirect
adaptive controllers, where a model-free learning algorithm is used to
estimate online the models parametric uncertainties. We then focus on a
more specific class of nonlinear systems, namely nonlinear systems affine
in the control vector. For this class of nonlinear systems we present a
constructive control design, which ensures the ISS, and then complement
it with an extremum seeking model-free learning algorithm to estimate the
model’s uncertainties.

In Chapter 5, we will study the problem of real-time nonlinear model
identification. What we mean by real time is that we want to identify
some parameters of the system online while the system is performing
its nominal tasks, without the need to stop or change the system’s tasks
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solely for the purpose of identification. Indeed, real-time identification, if
achieved properly, can be of great interest in industrial applications, where
interrupting a system’s task can lead to big financial losses. If we can identify
the system’s parameters and keep updating them in real time, we can track
their drift, for instance due to the aging of the system or due to a change in
the nominal task (a manipulator arm moving different parts, with different
masses, etc.) in real time, and then update the model accordingly.

We will study the problem of extremum seeking-based parametric
model identification for both finite dimension ordinary differential equa-
tion models and infinite dimension partial differential equations (PDEs).
We will also study in Chapter 5 a related problem, namely reduced order
stabilization for PDEs. In this problem we will use model-free extremum
seekers to auto-tune stabilizing terms, known as closure models, which are
used to stabilize reduced order models obtained by projecting the PDEs
onto a finite dimensional space.

Finally, as a by-product of the approach advocated in this book, we
will study in Chapter 6 the specific problem of model predictive control
(MPC) for linear models with parametric uncertainties. This case can be
seen as a special case of the general results presented in Chapter 4, where the
controllers ensuring ISS, are in the form of a model predictive controller.
We will use recent results in the field to design an MPC with ISS properties
(which is a rather standard result, due to the numerous recent papers on
the ISS-MPC topic), and then carefully and properly complement it with a
model-free extremum seeker to iteratively learn the model’s uncertainties
and improve the overall performance of the MPC.

“Conclusions and Further Notes” chapter summarizes the presented
results. We close with a few thoughts about possible extensions of the
results of this book, and mention some open problems which we think
are important to investigate in future adaptive control research.

M. Benosman
Cambridge, MA, United States
March 2016
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CHAPTER 1
Some Mathematical Tools

We will report here most of the mathematical tools which will be used
throughout this book. The goal is to give the reader the main tools to be
able to understand the remaining chapters of this monograph. The concepts
presented here might seem too general because the chapter includes all the
mathematical definitions which will be used at some point in the book.
However, later on, to make it more specific, in each of the chapters we
will start with a brief recall of the main mathematical tools which will be
needed in each specific chapter.

We start with some useful definitions and properties related to vectors,
matrices, and functions, see Golub and Van Loan (1996).

1.1 NORMS DEFINITIONS AND PROPERTIES

Let us start by recalling the important definition of vector spaces, which are
often used in control theory.
Definition 1.1. A vector space is a set V' on which two operations + and -
are defined, called vector addition and scalar multiplication.
The operation + (vector addition) must satisfy the following conditions:
—  Closure: if u and v are any vectors in V', then the sum u 4+ v belongs to V.
= Commutative law: for all vectors u and vin V, u+v = v+ u.
—  Associative law: for all vectors u, v, and win V, u+ (v +w) = (u+v) + w.
— Additive identity: the set V' contains an additive identity element, denoted by O,
such that for any vector vin V, 0 +v =vandv+ 0 = v.

— Additive inverses: for each vector v in V', the equations v+x = 0 and x+v = 0
have a solution x in V', called an additive inverse of v, and denoted by —v.
The operation - (scalar multiplication) is defined between real numbers (or scalars)

and vectors, and must satisfy the following conditions:

—  Closure: if v is any vector in V', and ¢ is any real number, then the product ¢ - v
belongs to 1/.

—  Distributive law: for all real numbers ¢ and all vectors u,vin V, ¢+ (u+v) =
c-u+tc-v.

Learning-Based Adaptive Control Copyright © 2016 Elsevier Inc.
http://dx.doi.org/10.1016/B978-0-12-803136-0.00001-4 All rights reserved. 1



2 Learning-Based Adaptive Control

= Distributive law: for all real numbers ¢, d and all vectorsvin V, (c+d) - v =
c-v+d-v.
—  Associative law: for all real numbers ¢, d and all vectors v in V, ¢- (d-v) =

(cd) - v.
= Unitary law: for all vectors vin V, 1-v = .

A very well-known example of vector spaces is the space R", n € Z*.
It will often be used in this book to define our mathematical models.

Definition 1.2. A Hilbert space is a vector space H associated with an inner
product {.,.) such that the norm defined by |f|*> = (f.f), Yf € H, makes H a
complete metric space.

A well-known example of finite-dimension Hilbert spaces is the R”
associated with the inner product (u,v) = ulv, that is, the vector dot
product.

Next, we recall the definition of norms of a vector x in a vector space V.
The norm of x can be seen as the extension to vector objects of the classical
absolute value for a scalar element |a|, a € R. A more rigorous definition
is given next.

Definition 1.3. The norm of a vector x € V is a real valued function ||.|| :

V- R, st.,
1. |lx|l = 0, with ||x|| =0 iff x =0
2. |lax|l = lalllxl|, VaeR

3. llx+yl < lxll +llyll, VyeV
Some examples of vector norms are as follows:
= The infinity norm: ||x||oc = max; |x;|
—  The one norm: ||x||y = ), |xil
—  The Euclidean (or two) norm: ||x|2 = \/3_; |xi|?
- The p-norm: ||x|l, = (3=, |x,-|P)1/p, Vp e Z*
We recall that these norms are equivalent in R”, that is, Vx € R"; these
norms satisfy the inequalities

Ixlloo < llxll2 < V/allxlloo,

(1.1)
Ixlloe < llxll1 < nllxlloo.
The Euclidean norm satisfies the following (Cauchy-Schwarz) inequality
Tyl < lxllzlipllz, Yoy € R (12)

We define now the induced matrix norms associated with vector norms.
We recall that a matrix 4 € R™*" consists of m rows, and n columns of real
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elements. It can be defined as the linear operator A(.) : R" — R"™, s.t.,
x=Ax, x e R", x e R". (1.3)

Definition 1.4. For a given vector norm ||x||, Vx € R", we define the
induced matrix norm ||A|, YA € R™ " as

Ax
| Al = sup x| = sup ||Ax], VxeR" (1.4)
0 Xl =1

Some properties of induced matrix norms are

L [l Ax]| < Il4lllxll, VxeR"

2. |A+ Bl < [lAll + |IB|

3. |4B|| < ||4] + |1 B]|

Examples of induced norms for A € R™*" are

—  The infinity induced matrix norm: ||Alloc = max; 3 |aj

—  The one induced matrix norm: || Ally = max; ), |a

—  The two induced matrix norm: |All2 = v/ Amax(ATA), where Amax(A) is
the maximum eigenvalue of 4

Another frequently used matrix norm is the Frobenius norm, defined as

l1Allr = /D, Zj la,-jlz. It is worth noting that the Frobenius norm is not

induced by any vector p-norm.

Some other useful definitions and properties related to matrices are
recalled below.

Definition 1.5. A real symmetric matrix A € R"™" is positive (negative)
semidefinite zfxTAx >0 (xTAx < 0), forall x # 0.

Definition 1.6. A real symmetric matrix A € R"™" is positive (negative)
definite if xT Ax > 0 (xT Ax < 0), for all x # 0.

Definition 1.7. The leading principles of a real symmetric matrix A € R"*"

alr ... a1
are defined as the submatrices A; = : : 1=l
ail v O

The positive (negative) definiteness of a matrix can be tested by using
the following properties:
1. A real symmetric matrix A € R" " is positive (negative) definite iff

Al » DAl < @), Wi=1,...:%
2. A real symmetric matrix A € R"*" is positive (negative) definite iff all

the determinants of its leading principles det(A;) are positive (negative).
Other useful properties are as follows:
1. If A > 0, then its inverse A~ ! exists and is positive definite.
2. If A1 > 0,and Ay > O, then A1 + BA2 > Oforalla > 0, B > 0.
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3. If A € R"™" is positive definite, and C € R"™*" is of rank m, then

B = CACT e R™"™ s positive definite.

4. The Rayleigh-Ritz inequality: for any real symmetric matrix A € R"*",

A A minxTx < xTAx < M(A)maxx T x, Yx € R™.

The norms and properties defined so far are for constant objects,
that is, constant vectors and matrices. It is possible to extend some
of these definitions to the case of time-varying objects, that is, time-
varying vector functions, and matrices. We recall some of these definitions
next.

Consider a vector function x(r) : Rt — R", with Rt = [0, oo, its

p-norm is defined as
00 1/p
50l = ( I ||x(r)||Pdr) , (15)
0

where p € [1, 0o, and the norm inside the integral can be any vector norm
in R". The function is said to be in L, if its p-norm is finite. Furthermore,
the infinity-norm in this case is defined as

Ix(Dlloo = sup [[x(l. (1.6)
teR+
The function is said to be in L if its infinity-norm is finite.
Some properties of these function norms are given below:
1. Hoélder’s inequality: for p, ¢ € [1, o0l, such that % + % =1 A F B Ly
g€ Ly, then 1&ll1 < 1l llgly-
2. Schwartz inequality: for f, g € Lo, |lfgll1 < IIfll2llgll2.
3. Minkowski inequality: for f,g € £, p € [1,00[, If+gll, < IIfll,+Ilgll,-
Next, to slowly move toward the definitions related to dynamical
systems and their stability, we introduce some basic functions’ definitions
and properties, see Perko (1996) and Khalil (1996).

1.2 VECTOR FUNCTIONS AND THEIR PROPERTIES

We will recall here some basic definitions of functions’ properties which are
often used in dynamical systems theory.

Definition 1.8. A function f : [0, oo[— R is continuous on [0, oof,
if for any € > O there exists a 8(t,€), such that for any t, t € [0, oo[, with
|t — 1| < 8(t,€) we have |f(t) — f(1)| < €.

Definition 1.9. A function f : [0, oo[— R is uniformly continuous on
[0, ocl, if for any € > O there exists a 8(€), such that for any t, t € [0, oo,
with |t — 1| < 8(€) we have |f(t) — f(1)| < €.



