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Preface

A transcendental number is a complex number which is not a root of a polynomial
f € Z[X] \ {0}. Liouville constructed the first examples of transcendental numbers
in 1844, Hermite proved the transcendence of e in 1873, Lindemann that of x in
1882. Siegel, and then Schneider, worked with elliptic curves and abelian varieties.
After a suggestion of Cartier, Lang worked with commutative algebraic groups; this
led to a strong development of the subject in connection with diophantine geometry,
including Wiistholz’s Analytic Subgroup Theorem and the proof by Masser and
Wiistholz of Faltings’ Isogeny Theorem.

In the meantime, Gel’fond developed his method: after his solution of Hilbert’s
seventh problem on the transcendence of a?, he established a number of estimates
from below for laf — a3| and |Bloga; — logay|, where «, a; and B are
algebraic numbers. He deduced many consequences of such estimates for diophantine
equations. This was the starting point of Baker’s work on measures of linear
independence of logarithms of algebraic numbers. One of the most important features
of transcendental methods is that they yield quantitative estimates related to algebraic
numbers. This is one of the main reasons for which “there are more mathematicians
who deal with the transcendency of the special values of analytic functions than those
who prove the algebraicity”! . A first example is Baker’s method which provides lower
bounds for nonvanishing numbers of the form

e 1)

when «a, ..., a, are algebraic numbers and by, ..., b, rational integers. Such
estimates, which are of central interest, have a wide range of applications. A second
important example is Schmidt’s Subspace Theorem, which extends the Thue-Siegel-
Roth Theorem to simultaneous diophantine approximation; its range of application
is wider than Baker’s Theorem, but, in contrast with Baker, Schmidt’s result is so far
not effective.

This subject is growing so fast that it is hard to give a report on the state of the art
which covers all aspects. Our concern here is with commutative linear algebraic
groups. A connected and commutative algebraic subgroup of GL, splits over a
finite extension; over an algebraically closed field it is a product of additive and
multiplicative groups. Hence the algebraic groups we consider are G% x G%, with

! G. Shimura, Duke Math. J. 44, No 2 (1977), p. 365.
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dp > 0.and d; > 0. In terms of analytic functions, our main object of study is the
usual exponential function. We discuss the qualitative as well as the quantitative
aspects of the subject. The latter is not restricted to measures of linear independence
of logarithms of algebraic numbers, but includes also simuitaneous diophantine
approximation results leading to statements of algebraic independence for values
of the exponential function, in either one or several variables.

We do not consider elliptic curves, abelian varieties, and more generally nonlinear
algebraic groups; we do not consider either elliptic functions, WeierstraB zeta
functions, theta functions nor abelian functions. A lot of results in this book have
already been extended to the more general set-up of commutative algebraic groups,
but a few items are specific to the linear ones. An example of a feature particular
to linear algebraic groups is the Fourier-Borel duality, which relates Gel’fond’s
method to Schneider’s. Moreover, restricting ourselves to the linear case enables
us to compute more easily all constants.

Among the recent developments of the subject is the introduction, by M. Laurent,
of interpolation determinants. They replace the constructions of auxiliary functions.
Instead of solving some system of equations, we only consider the determinant of
a matrix corresponding to this linear system. There is no need any more to appeal
to Dirichlet’s box principle (or pigeonhole principle, alias Thue-Siegel’s Lemma).
Here, we use this approach in most proofs.

The above-mentioned matrix is associated to the linear system with respect to
given bases. A further step has been performed by J-B. Bost, using Arakelov theory,
where he considers directly the related linear map without selecting bases. This
approach will certainly be more efficient for nonlinear algebraic groups, and we
mention it in passing, but we do not follow it here.

A central result in this book is the Linear Subgroup Theorem, which occurs in
two forms. The qualitative one (Chapter 11) is a lower bound for the dimension n
of the C-vector subspace of C? spanned by points n whose coordinates are either
algebraic numbers, or else logarithms of algebraic numbers. The images of such
points n under the exponential map of some commutative linear algebraic group are
algebraic over the field of algebraic numbers. Hence the Linear Subgroup Theorem
deals with n-parameter subgroups of linear algebraic groups, and involves functions
of n complex variables.

The quantitative version of the Linear Subgroup Theorem concerns the simulta-
neous approximation of such points 1. Linear combinations of logarithms of algebraic
numbers arise in several ways as special cases of this general setup.

The main conjecture is that linearly independent logarithms of algebraic numbers
should be algebraically independent. As a matter of fact, so far all known partial
results on this topic are consequences of the Linear Subgroup Theorem.

There is a strong contrast between the simplicity of the conjectures, both for
qualitative and quantitative statements, and currently known results. A comparison
between the conjecture on algebraic independence of logarithms (Conjecture 1.15)
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on one hand, the Linear Subgroup Theorem of Chapter 11 (Theorem 11.5) on the
other, illustrates this point for the qualitative aspect. For the quantitative one, an
example of this contrast is illustrated by comparing the known measures of linear
independence of logarithms (Theorem 9.1) with the conjectural ones (Conjectures
1.11 and 14.25).

We very much expect that, once the theory is more highly developed, the results
will be simpler to state, but we have far from reached this stage at present and the
statements of the results of the last chapters are not as simple as we would wish. The
quantitative version of the Linear Subgroup Theorem in Chap. 13 (Theorem 13.1) is
by no means a simple statement; on the other hand it includes a lot of diophantine
estimates, as shown in Chap. 14. The large amount of corollaries it contains may
be an excuse for its lack of simplicity, but it remains a challenge to get simpler
statements which are as powerful.

The first chapters may serve as an introduction to the subject of transcendental
numbers. For instance the first three chapters do not require much preliminary knowl-
edge and include already complete proofs of a number of classical transcendence
results.

Three proofs of Baker’s transcendence theorem on linear independence of loga-
rithms of algebraic numbers are given: in Chap. 4 we follow an argument of Bertrand
and Masser who derived Baker's Theorem from the Schneider-Lang criterion con-
cerning algebraic values of meromorphic functions on Cartesian products. In Chap. 6
(and Chap. 9 for the nonhomogeneous case) we extend Schneider’s method, and in
Chap. 10 we explain Baker’s argument which extends Gel’ fond’s solution of Hilbert's
seventh problem. We give also several measures of linear independence of logarithms
of algebraic numbers: a comparatively simple proof is given in Chap. 7, and refined
estimates are proved in Chap. 9 and 10.

We do not consider applications of such estimates to diophantine equations,
but we give further examples of diophantine approximation results (in Chap. 14)
together with consequences (in Chap. 15). This last chapter deals with algebraic
independence; it does not cover the subject in an exhaustive way; a more complete
introduction to this topic is [NeP 2000], which includes transcendence criteria with
proofs.

Several results presented here are new, and the full details have not appeared in
print before.

Our empbhasis is not only on the results, but also on the methods; this is why we
give several proofs of the same results. In the same spirit, sometimes we also propose
several choices of the parameters which occur in the transcendence arguments. It turns
out that the freedom in this choice is closely related to the quality of the quantitative
refinements: if the proof of the qualitative transcendence result can be achieved with
a broad range of choice for the auxiliary parameters, then one should expect a sharp
diophantine estimate.

Another goal is to describe some of the main tools which are available. We make
no attempt to be complete. In [FNe 1998] the reader will find some items which are
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not discussed here. An important example of a missing item is Nesterenko’s proof
[Ne 1996] of the algebraic independence of & and e”.

Writing this book took more than 10 years. The first written parts were notes
of lectures given at the Institut Henri Poincaré in the 80’s for several courses of the
DEA (Dipldme d’Etudes Approfondies) of Mathématiques at the Université P. et
M. Curie (Paris VI). In 1992, I was invited by R. Balasubramanian to give a series
of lectures at the MathScience Institute of Madras, and I took this opportunity to
write down a preliminary version of some of the chapters below (more or less the
seven first chapters). These notes were published in [W 1992]. A chapter on zero
estimates by D. Roy was included, as well as an appendix by M. Laurent [Lau
1994]. The present book grew out of these Lecture Notes; the material of the last
eight chapters includes a multiplicity estimate (again written by D. Roy), the Linear
Subgroup Theorem (both in qualitative and quantitative form), as well as results of
simultaneous approximation and algebraic independence. Some of these results are
due to D. Roy (like the Strong Six Exponentials Theorem of § 11.6), others (mainly
in the last two chapters) have been obtained in joint papers with D. Roy.

The influence of Damien Roy on this book is important; not only did he write
two chapters, but he also contributed to the proof of many results quoted in this book,
and furthermore his many comments have been very influential.

Many other colleagues and friends also sent me comments, remarks and sugges-
tions along the many years which have been needed to complete this book. Even
though I do not mention them all, I am deeply thankful to them.

Special thanks are due to Guy Diaz who sent me a long list of comments on a
preliminary version of this book. I wish also to express my gratitude to Francesco
Amoroso, Yann Bugeaud, Frangois Gramain, and Paul Voutier.

The help of Sinnou David during the last stage of the TgXnical preparation of
this volume is also gratefully acknowledged.

We consider mainly the Archimedean situation; the same topic has been investi-
gated in the ultrametric domain also, and this would have deserved consideration also.
In fact my main motivation to study this subject arose from Leopoldt’s Conjecture on
the p-adic rank of the units of algebraic number fields (solved by Ax-Baker-Brumer
for abelian extension). I wish to take this opportunity to thank Jean Fresnel, who
suggested this topic to me thirty years ago, and helped me take my first steps in
mathematical research.

Paris, January 2000 Michel Waldschmidt



Prerequisites

In this book, an algebraic number is a complex number which is algebraic over the
field of rational numbers. Given a (commutative) ring A and a subring k which is
a field, an element @ in A is algebraic over k if there exists a nonzero polynomial
P € k[X] such that P(8) = 0. An element of A is transcendental over k if it is not
algebraic over k. Hence a transcendental number is a complex number which is not
algebraic.

We denote by N = {0, 1, 2, ...} the set of nonnegative integers, by Z the ring of
rational integers and by Q, R, C the fields of rational numbers, real numbers and
complex numbers respectively.

The set of algebraic numbers is a subfield of C: it is the algebraic closure of Q
into C (see [L 1993], Chap. V § 2). This field will be denoted by Q. We shall need
a few properties of algebraic numbers and number fields which will be recalled in
Chap. 3.

Given elements 6, ..., 8, in our ring A, we say that they are algebraically
dependent over k if there exists a nonzero polynomial P € k[X,, ..., X,] such
that P(9,,...,0,) = 0. Otherwise they are algebraically independent over k. The
transcendence degree of A over k is the maximal integer n such that there exist n
elements in A which are algebraically independent over k. We denote it by trdeg, (A).
For ky C k2 C k3, we have (see for instance [L 1993], Chap. VIII)

trdeg,, (k3) = trdeg,, (k) + trdeg;, (k3).
Any element of k; is algebraic over k; if and only if
trdeg,, (k2) = 0;

in this case we say that k, is an algebraic extension of k;. As a consequence, for
complex numbers, the concept of algebraic independence over Q or over Q is the
same: we shall just speak of algebraically dependent or independent numbers.

We shall use the basic notions of linear algebra. The dimension of a k-vector
space V will be denoted by dim,(V), the rank of a Z-module M by rankz(M) or
simply rank(M). An abelian group is nothing else than a Z-module; when it is written
multiplicatively, one speaks of multiplicatively dependent or independent elements
(which means Z-linearly dependent or independent elements in the abelian group).
For instance if k is a field and y, . .., ¥ elements in k* =k \ {0}, then ¥, ..., Vim
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are multiplicatively dependent if and only if there exists & = (by, ..., by) € Z™ \ {0}
such that the number

_g=)’|b] ...y:l"
is 1.

The rank of a matrix M will be denoted rank(M): this is the largest integer r for
which there exists a regular r x r submatrix of M.

For aring B, a subring A and a subset E of B, we denote by A[E] the subring
of B generated by A U E, namely the intersection of all subrings of B containing
A and E. For a field K, a subfield k and a subset E of K, we denote by k(E) the
subfield of K generated by k and E. When E = (y,,..., ¥m]} is finite, we write
simply A[y, ..., ¥=] and k(y, ..., ¥m). In particular Q(y) (resp. Q(Z)) denotes
the field generated by an element y € C (resp. by atuple y = (¥, ..., ¥m) € C™).

For U and V vector spaces over a field k, Hom,(U, V) will denote the space of
k-linear mappings U — V.

The basic facts from algebraic geometry and commutative algebra which are
needed are recalled in §§ 5.2 and 8.2 respectively.

A useful tool is Dirichlet’s box principle, also called Dirichlet's pigeonhole
principle (Schubfachprinzip). One of the many equivalent statements is:

e A mapping E — F between two finite sets E and F with
Card(E) > Card(F)
is not injective.

An important application of it is Thue-Siegel's Lemma (see § 4.5). We shall not
need the more sophisticated version of Thue-Siegel’s Lemma in [BoVa 1983], based
on an idea of Mahler using geometry of numbers, but Minkowski’s Theorem (see
for instance [Sc 1991], Chap. I)) will be used in § 7.8 for the proof of Lemma 7.19.

The notion of algebraic independence will be needed not only for numbers, but
also for functions. In a single variable we take for & the field C(z) of rational functions
and for A either the ring of analytic (i.e. holomorphic) functions over a domain (=
connected open subset) D of C, or the field of meromorphic functions over D. A
function f € A is called transcendental if it is transcendental over C(z), algebraic
otherwise. An entire function is a function which is analytic in the whole of C. It is
easy to check that an entire function is algebraic if and only if it is a polynomial, and
that a meromorphic function in C is algebraic if and only if it is a rational function,
i.e. an element of C(z).

According to the general definition, analytic functions fj, ..., fs of n variables
are algebraically independent over C if and only if, for any nonzero polynomial
P € C[Xy,..., Xg4), the function P(fi,..., fs4) is not the zero function. Also
fi..... fa are algebraically independent over C(zy, . .., z,) if and only if, for any
nonzero polynomial P in the ring of polynomials C[ X, ..., X,,, Y1, ..., Y4s]inn+d
variables, the function

P(Zlu---tZu!fl(;.)""'fd(z.))



Prerequisites XV

is not the zero function.

A function f is called transcendental if the n + 1 functions z;, ..., z,, f(z)
are algebraically independent: this means that f is transcendental over the field
C(Z]. ¥ Ealh Z,,).

The exponential function
2 3 0 "
n!

F N
1 — — e o= —
+z+2+6+ ,.E

is denoted either by e* or by exp(z), and
e =exp(l)=2.71828182...

is the natural basis of Napierian logarithms. For « € C*, a determination of the
logarithm of a is any complex number A such that exp(A) = @. Fora givena € Q,
the set of A in C with « = e* is a whole class of the additive group C modulo 2ixZ. In
order to avoid confusion, we shall not use too often the notation log @ which depends
on the choice of the branch of the logarithmic function. Nevertheless we remark that
the Q-vector space of logarithms of nonzero complex algebraic numbers

L=exp'@)={reC; & eQ}

is the set of all numbers of the form loga where a runs over the set of nonzero
complex algebraic numbers and where we take all possible values for log:

£=(loga;a €Q }.

When a determination A of the logarithm of « is chosen, for 8 € C we write o in
place of exp(BA).

We shall say that a complex function f of one variable is analytic in a closed
disc {z € C; |z| < R} of Cif f is continuous on this disc and analytic in the open
disc |z| < R. In this case we denote by | f|g the number sup{| f(z)|; |z| < R}. By
maximum modulus principle we also have

| flg =sup{|f(2)|; |z| = R}.

We shall also work with functions of several variables. Forz = (z;,...,z,) € C"
(and therefore also for z in N” or in Z"), we set

Izl = max |z;| and |zl = |z1] + - - - + |zal.

iI<i<n
If, further, ¢ = (01, ..., 0,) € N”, then we define
1"_=z71...z:"' .d-!=al!"'an!

(with 0! = 1) and
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(@) @)

22 =12+ + 202,

For z and 2’ in C", let

denote the standard scalar product.
To each w = (wy, ..., w,) € C" we attach a derivative operator of order 1:

] ]
D, =wj—+: -+ w,—
= laZ[ aZA

on the ring of entire functions in C". More generally, for S a positive integer, a
derivative operator D of order S is a linear combination, with complex coefficients,

’ (Y

where g runs over the set of elements in N” satisfying |||l = S. This amounts to say
that D is a linear combination, with complex coefficients, of products Dy, - - Dy,

where (wy, ..., W) ranges over a finite subset of (€C)S.
Most often, tuples of numbers are underlined, like w = (wy, ..., wg) € C7; for
wy, ..., W, in C? we write w = (w,, ..., w,) € (C*)®.Forg € N%, 1 € N®,

t € Z% and z € C? withd = d, + d), the function _
D%(zzeu) = D;: o ;:‘; (Z:I Qe z;?et‘%.lq.....ﬂ‘lz‘)

is an exponential polynomial for which explicit expressions will be given (see
Lemmas 4.9 and 13.6).
For a complex function f which is continuous in a polydisc

[zeC"; 1zl < R}

and analytic inside, we have again

sup(l f(@I; |zl < R} =sup{|f(DI; Iz| =R}

this number will be denoted | f |.

Our main tool will be Schwarz’ Lemma, which is a sharp upper bound for the
modulus of a complex function, taking into account its zeroes. See § 2.2.3 for one
variable, § 6.2.1 for one point and several variables, § 4.3 for Cartesian products.

We shall use only very simple properties of analytic functions in C" (see for
instance [LelGru 1986], Chap. I, § 1). Cauchy’s inequalities will occur in §§ 4.6 and
4.7: an entire function f in C", whose Taylor expansion at the origin is

|

Y agz% with a; = —DIf(0)

1
geN" :

1Q

satisfies, for all r > 0:
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!
|1D2£O)] < 71 f1,-

One deduces, for { € C"and r > 1+ |{|,

a! ;

——————— < ! B

(r _ IS')'£| Iflr —_ g 'f'r

In § 4.3 we shall also use the fact that a continuous mapping f: C" — C is analytic
if and only if it is analytic in each z; when the other variables are fixed. This is a
consequence of Cauchy’s integral formula for polydiscs; see for instance [H6 1973],
Th. 2.2.1.

[DEFEON <






Notation

Some notation has already been fixed in the prerequisites section. We complete it
with the following ones which will be used throughout the book.
We shall use Kronecker’s diagonal symbol:

b= 1 ifi=j,

Y710 ifi #j.
For x € R, we set

log, x = log max({e, x}

and we denote by [x] € N the integral part of x, with0 < x — [x] < 1.

The binomial coefficient
(n) _ n!
k) k'(n— k)

is O unless 0 < k < n. More generally, an empty sum is equal to 0, while the value
of an empty product is 1.

The number of elements in a finite set £ will be denoted either by Card(E) or
else by |E|.

© Mat,,, denotes the space of d x £ matrices

© 'Mis the transposed of a matrix M.

1 0 .- 0
o1 .. o il

olg=| . . . . |istheidentity d x d matrix.
00 .- 1

o For a positive integer 4 and a real number § > 0, the set of d-tuples
Z'S)1={se2; |sI < 5}
has (2[S] + 1)¢ elements.
o For S=(Sy, ..., Sq) € R, the set of d-tuples

Z"U={§€Z“; lsil < 8 for 1 <i <d]
has (2[S;] + 1)---(2[S4] + 1) elements.



