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Preface

HIS IS A BOOK that explores what economics has to do with science.

The book also explores how science affects the economy, especially
economic growth. Because much of public research occurs at universi-
ties and medical schools, especially in the United States, much of the
book’s focus is on how research is conducted and supported at universi-
ties. It is also about the consequences for universities of having the re-
search enterprise—at least in the United States—so fully embedded in the
university.

This is not to say that economics has a monopoly when it comes to fac-
tors that affect science or in providing a lens for examining science. Other
disciplines—and their foci—contribute considerably to the study of science.
Sociology, for example, contributes a great deal to the understanding of how
science is organized and the reward structure of science. It is also not to say
that science is the only factor that contributes to economic growth. Politics
and values, for example, clearly play important roles.

Despite the title, the book draws on research and insights from several
disciplines. Indeed, one of the factors that led me to study science was the
opportunity to indulge my interest in and penchant for reading outside
my—sometimes overly narrow—discipline of economics.

Some of the discussion in the book is highly descriptive, summarizing
what is known about the various players and factors that influence research
behavior and outcomes. This descriptive nature is by design. Throughout
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my thirty-plus years of studying science, I have been amazed at the number
of people who venture to write about science and science policy without
understanding the environment in which research takes place. One of my
goals in writing this book is to lay out the scientific landscape in what I
hope to be a somewhat engaging manner, so that those who wish to con-
tinue the study of the economics of science (and I am happy to say there
are a growing number) can approach it with a more solid footing. I also
hope to offer, from time to time, questions that warrant further research.
I do not mean by this that I see myself as the first to examine these issues,
and I certainly don’t see myself as the most proficient. Far from it: my
work—and that of other scholars in the field—owes an enormous debt to
the luminaries who began the field a generation (or half a generation) be-
fore I began doing research in the area. They include Kenneth Arrow, Paul
David, Zvi Griliches, Robert K. Merton, Richard Nelson, and Nathan
Rosenberg.

But I did not only—or primarily—write the book for my peers or their
students. I also wrote it for the considerable community that works at public
research institutions, be they in the United States, China, Europe, or Japan. I
also wrote it for policy makers, as well as for members of the general public
who share an interest in the workings of public institutions and the study of
science. It is my hope that a greater understanding of how economics shapes
science can lead to more effective science policy and a better use of resources
in the research enterprise.
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CHAPTER ONE

What Does Economics
Have To Do with Science?

THIS IS A BOOK about how economics shapes science as practiced at
public research organizations. In the United States these are primarily
universities and medical schools. But in Europe and Asia a considerable
amount of public research is conducted at research institutes. The book’s
focus reflects the strong role that public research organizations play in
creating knowledge. In the United States, for example, approximately 75
percent of all articles published in scientific journals are written by scien-
tists and engineers working at universities and medical schools.! Of equal
importance, almost 60 percent of basic research is conducted at universi-
ties and medical schools.?

What does economics have to do with science? Plenty, it turns out.
Economics, after all, is the study of incentives and costs, of how scarce
resources are allocated across competing wants and needs. Science costs
money and incentives play a key role in science. At the extreme end of the
cost spectrum is the Large Hadron Collider (LHC), which came on line
(for the second time) in the fall of 2009 and cost approximately $8 billion
(U.S.).3 But there are numerous other examples. The personnel costs of a
typical university lab with eight researchers is about $350,000 after fringe
benefits but before taking into account the cost of the principal investiga-
tor’s time or indirect costs.* Public research organizations routinely spend
large sums of money building and maintaining research facilities and large
sums of money on start-up packages for faculty hired to work in the new
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facilities. In recent years, these packages have become sufficiently large
that a university routinely spends four to five times as much on the pack-
age as on the faculty member’s annual salary.’ Even mice, the ubiquitous
research animal, can cost a substantial amount to buy and keep. Custom-
made mice, designed with a predisposition to a specific disease or problem,
such as diabetes, Alzheimer’s disease, or obesity, can cost in the neighbor-
hood of $3,500. The daily cost of keeping a mouse is around $0.18. Sounds
cheap—until one realizes that some researchers keep a sufficient number
of animals that the annual budget for mouse upkeep can be in excess of
$200,000.¢

The amount of money spent on scientific research in the public sector is
substantial. The United States spends between 0.3 and 0.4 percent of its
gross domestic product (GDP) on research and development at universities
and medical schools. This represented almost $55 billion dollars in 2009
or approximately $170 per person.” While most other countries spend a
smaller percent of GDP, several countries, including Sweden, Finland, Den-
mark, and Canada, spend a considerably higher percentage of their GDP
on research and development at universities and medical schools.?

Costs

Costs affect the way research is conducted. Costs were a major factor in
Europe’s decision to settle for building the Exceedingly Large Telescope
(E-ELT) rather than the Overwhelmingly Large Telescope (OWL)—with its
much larger mirror—as originally planned.’ Costs can derail large projects
or at best delay them. Original plans called for the multi-billion-euro fusion
reactor ITER to begin operation in 2016. Now the earliest that ITER can
become operational is in 2018—and if it does become operational at that
time, it will be a stripped-down version; additional components will be
needed for power-producing plasmas.'® Along the way, the costs of con-
structing ITER keep rising. New cost calculations made public in the spring
of 2010, for example, suggest that Europe’s contribution will be 2.7 times
greater than the amount originally estimated; that of the United States will
be about 2.2 times greater.!!

Costs play a role in determining whether researchers work with male
mice or female mice (females, it turns out, can be more expensive), whether
principal investigators staff their labs with postdoctoral fellows (postdocs)
or graduate students, and why faculty prefer to staff labs with “temporary”
workers, be they graduate students, postdocs, or staff scientists, rather than
with permanent staff. High electricity costs dictate that the LHC not run in
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the winter but rather during the rest of the year when electricity is consid-
erably less expensive.!? Costs are a major factor in determining what
equipment at a university will be “core” and shared across labs rather
than belonging to a specific lab. Costs—and the desire to minimize risk—
have played a major role in the decision of universities to substitute non-
tenure-track faculty for tenure-track faculty.

Costs affect the pace of discovery. When the human genome project be-
gan in 1990, it cost more than $10.00 to sequence a base pair. Sequencing
costs fell rapidly, hitting less than a penny a base pair by 2007. That is now
ancient history: since then, new generations of sequencing technology have
been developed that have lowered the cost dramatically. Before this book
sees the light of day, it is possible that the Archon X Prize for Genomics will
be awarded to the first group to “build a device and use it to sequence 100
human genomes within 10 days or less . . . at a recurring cost of no more
than $10,000 per genome.” 3

Incentives

Universities respond to incentives. In the early 2000s, universities went on
an unprecedented building spree, developing new research facilities in the
biomedical sciences. Within less than five years, construction and renova-
tion costs for biomedical research facilities accelerated from $348 million
annually to $1.1 billion annually at U.S. medical schools. (All figures are
in 1990-adjusted dollars.)!* The reason: the budget for the National Insti-
tutes of Health, the major funder of research in the biomedical sciences,
doubled between 1998 and 2003, opening a panoply of what universities
perceived to be new opportunities to expand their research efforts and, in
the process, enhance their reputation. It was not the first time that U.S.
medical schools responded to financial incentives. The substantial expan-
sion of medical colleges over the past 40 years is widely attributed to the
adoption of Medicare and Medicaid in 1965, which provided university
medical schools with a new source of revenue.

Scientists and engineers respond to incentives as well. Money, despite
statements to the contrary, is not unimportant. Actions speak louder than
words. Scientists routinely move to take more lucrative-paying positions.
A number of public universities have lost faculty in recent years because
private universities, especially before the financial collapse of 2008, could
often offer much more lucrative packages than their public sisters. Indeed,
in the 2009-2010 academic year, only one public institution (UCLA) was
among the top twenty research universities in terms of salaries paid to full
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professors—and it held the 20th position, paying $43,000 less than top-
paying Harvard. Phones began to ring at Berkeley in 2009 soon after the
California system imposed a substantial pay cut on its faculty. Full profes-
sors at Berkeley already earned about 25 percent less than their peers at
Harvard and Columbia. Now they would earn even less.!’

Scientists respond to incentives in choosing where to submit articles for
publications. The number of articles submitted to the journal Science, for
example, is significantly related to whether the scientist’s home country
offers a bonus or other monetary reward for publishing in the journal.!® In
some instances, the bonuses can be quite large—on the order of 20 to 30
percent of the scientist’s base salary.

Financial incentives encourage university faculty to start new companies
based on their research. In recent years, a number of scientists have made
substantial sums of money by forming start-up companies or by receiving
royalties from universities licensing patents on which they are an inventor.
David Sinclair, a Harvard professor and founder of Sirtris Pharmaceuti-
cals, received more than $3.4 million for the shares he held in Sirtris when
Glaxo acquired the company in 2008. Robert Tjian received millions in
2004 when Tularik, the company he cofounded when he was a faculty
member at the University of California—Berkeley, was sold to Amgen for
$1.3 billion. Stephen Hsu, a professor of physics at the University of Ore-
gon, received a substantial amount when Symantec paid $26 million in cash
in 2003 for one of two software companies he had founded. Laszl6 Z. Bito,
whose work led to the invention of the drug Xalantan for the treatment of
glaucoma, has earned several million a year from the patent that Colum-
bia University held on the drug. The patent is due to expire in 2011.!7 In
2005, three researchers at Emory University divided more than $200 mil-
lion when Emory sold its royalty interest in emtricitabine, used in the treat-
ment of human immunodeficiency virus (HIV), to Gilead Sciences and Roy-
alty Pharma. Although rare, events such as these occur with sufficient
frequency that, on the campus of almost every research university in the
United States, two or three faculty members have become wealthy as a result
of their research.

Neither do scientists, especially highly productive scientists, receive a
pauper’s pay. Full professors at the top of their game employed at private
research universities in math earned an annualized salary of $180,000 a
year in 2006 in the United States. Comparably ranked full professors
at public universities earned $150,000. Those in the biological sciences
earned $277,700 at private research universities; those at public universi-
ties earned $200,000.18 It is no wonder that the United States has been a
magnet for highly productive European scientists. Not only has there been



