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Preface

This text is intended for use at the senior-graduate level in university courses on
linear systems and multivariable system design. It may also be used for inde-
pendent study. and reference by engineers and applied mathematicians. The
mathematical background assumed for this book is a working knowledge of
matrix manipulation and an elementary knowledge of differential equations.
The unstarred sections of this book have been used, for over a decade, in the
first graduate course on linear system theory at the State University of New
York at Stony Brook. The majority of the starred sections were developed
during the last three years for a second course on linear systems, mainly on
multivariable systems, at Stony Brook and have been classroom tested at a
number of universities.

With the advancement of technology, engineers have become interested in
designing systems that are not merely workable but also the best possible.
Consequently, it is important to study the limitations of a system; otherwise,
one might unknowingly try to design an impossible system. Thus, a thorough
investigation of all the properties of a system is essential. In fact, many design
procedures have evolved from such investigations. This text is"devoted to this
study and the design procedures developed thereof. This is, however, not a
control text per se, because performance criteria, physical constraints, cost,
optimization, and sensitivity problems are not considered.

This text is a revised and expanded edition of Introduction to Linear System
Theory which discussed mostly the state variable approach and was published
in'1970. Since then, several important developments have been made in linear
system theory. Among them, the geometric approach and the transfer-function
matrices in fractional forms, called the matrix-fraction description, are most
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XVi PREFACE

pertinent to the original text. The geometric approach is well covered in
W. M. Wonham’s Linear Multivariable Control: A Geometric Approach, 2d ed.,
Springer-Verlag, New York, 1979 and is outside the scope of this text. Hence
the new material of this edition is mainly in the transfer-function matrix in
fractional form. Because of this addition, we are able to redevelop, probably
more simply in concepts and computations, the results of the state variable
approach and establish a fairly complete link between the state-variable
approach and the transfer-function approach.

We aim to achieve two objectives in the presentation. The first one is to
develop major results and design procedures using simple and efficient methods.
Thus the presentation is not exhaustive: only those concepts which are essential
in the development are introduced. For example, the Smith-McMillan form is
not used in the text and is not discussed. The second objective is to enable the
reader to employ the results developed in the text. Consequently, most results
are developed in a manner suitable for numerical computation and for digital
computer programming. We believe that solving one or two problems of each
topic by hand will enhance the understanding of the topic and give confidence
in the use of digital computers. With the introduction of the row searching
algorithm (Appendix A), which has been classroom tested, this is possible even
for multivariable systems, as long as their degrees are sufficiently small.

The level of mathematics used in this edition is about the same as that of the
original edition. If concepts and results in modern algebra more extensive than
those in Chapter 2 are introduced, some results in the text can be developed
more elegantly and extended to more general settings. For example, the
Jordan form can be established concisely but abstractly by using the concepts
of invariance Subspaces and direct sum. Its discussion can be found in a large
number of mathematical texts and will not be repeated here. In view of our
objectives, we discuss the computation of the required basis and then develop
the Jordan form. By using some concepts in abstract algebra, such as ring,
principal ideal domain, and module, the realization problem (Chapter 6) can be
developed more naturally and some results in this text can be extended to delay
differential equations, linear distributed systems, and multidimensional systems.
These are extensively studied in Algebraic System Theory, which was initiated
. by R. E. Kalman in the late 1960s and has extended in recent years most of the
results in this text to linear systems over rings. The concepts used in algebraic
system theory are less familiar to engineering students and require more
mathematical sophistication and will not be discussed. All the results and
design procedures in this text are developed by using only elementary concepts
and results in linear algebra.

The results in this text may eventually be implemented on digital computers.
Because of the finite word length, the sensitivity of problems and the stability
of algorithms become important on computer computations. These problems
are complex and extensively discussed in texts on numerical analysis. In our
development, we will take note of these problems and remark brieflty wherever
appropriate.

The arrangement of the topics in this text was not reached without any
difficulty. For example, the concepts of poles and zeros seem to be best intro-



PREFACE XVii

duced in Chapter 4. However, their complete treatments require irreducible
realizations (Chapter 6) and coprime fractions of transfer-function matrices
(Appendix G). Moreover, the concept of zeros is used only in Section 9-6.
Hence it was decided to create an appendix for the topic. The coprimeness of
polynomials and polynomial matrices might be inserted in the main text.
This, however, will digress too much from the state-variable approach; thus
the topic was grouped in an appendix.
The logical sequences of various chapters and appendixes are as follows: .

Chapter |
Chapter 2 t———————— Chapter 3 (These orders can be interchanged.)
Secs. 2-1
to 2-5

Chapter 4

l

Chapter 5§ +—— Appendix B
Appendix A —— & Sec. 5-8 \\

|

Chapter 6

Appendixes C and D

Sec. 6-2 ———————————= Chapter 8 . Chapter 7
t——————— Hankel method
Sec. 6-5 <+—Appendix E — Secs, 8-5+— Appendix F — Sec. 74

Secs. G-1 Appendix G ——+ Secs. 6-6 8-6
G-2 to 6-9
Chapter 9
Secs. 9-1 Appendix H
Single-variable  Secs. 9-5 9.2 /
cases of 96 +-—~———— 93 —————— —~Sec. 9-4
Secs. 9-5 to 9-7 9.7

The material connected by a broken line is not essential in the development.
The logical dependencies among Chapters 6, 7, 8, and 9 are loose, and their
various combinations can be adopted in one- or two-semester courses. When
I teach a one-semester course at Stony Brook, the unstarred sections of the
following chapters are covered:

Chapter 1

Chapter 2

Chapter 3 (Skip Theorem 3-1 and its corollary.)

Chapter 4 (Skip Theorem 4-11.)

Chapter 5 (Emphasize the time-invariant part by skjpping Theorems 5-2,
5-5, and 5-11.)

Chapter 6

Chapter 7

Chapter 8
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We emphasize the exact meanings of theorems and their implications; hence the
proofs of a number of theorems are skipped. For example, we prove only
Theorems 2-1 and 2-2 in Chapter 2. We skip the proofs of Theorems 4-1, 4-2,
and others. In the second course, we cover the following:

Appendix A : ,

Section 5-8, controllability and observability indices

Hankel method (Section 6-4 and method 11 of Section 6-5)
Appendix E y

Singular value decomposition method (Method I of Section 6-5)
Appendix G

Sections 6-6 to 6-9

Starred sections of Chapter 7

Appendix H ’

Chapter 9

Those who are interested in quick access to the design methods using thc
transfer-function matrix in fractional form may proceed from Sections 2-1 10
2-5, Appendixes A and G, and then to Sections 9-5 to 9-7, 'or only their single-
variable cases. .

The problem sets form an integral part of the book. They are designed to
help the reader understand and utilize the concepts and results covered. In
order to retain the continuity of the main text, some important results are
stated in the problem sets. A solutions manual is available from the pub-
lisher.

The literature on linear system theory is very.extensive. The length of this
text, however, is limited. Hence the omission of some significart results is
inevitable and I would like to apologize for it. Iam indebted to many people in
writing this book. Kalman's work and Zadeh and Desoer’s book Linear
System Theory form the foundation of the original edition of this book. Rosen-
brock’s and Wolovich’s works are essential in developing the present edition.
I have benefited immensely in my learning from Professor C. A. Desoer. Even
to this date, 1 can always go to him whenever I have questions. For this, I can
never express enough of my gratitude. To Professors B. J. Lgon, E. J. Craig,
1.B. Rhodes, P.E. Barry (first edition) and to Professors M. E. Van Valkenburg,
‘W. R. Perkins, D. Z. Zheng (present edition), I wish to express my appreciation
for their reviews and valuable suggestions. I would like to thank President
F. Zhang and Professor K. W. You of Chengdu Uniyersity of Science and
Technology, Professor 5. B. Park of Korea Advanged Institute of Science and
- Technology, Professor T. S. Kuo of National Taiwan Univ'ersity, and Professor

8. K. Chow of National Sun Yat-Sen University, Taiwan, for provgﬂng oppor-
tunities for me to lecture on an earlier draft of Chapter 9 and Appendix G.
I especially appreciate the opportunity at Chengdo Wniversity to litteract with

“several faculty members, especially Professor L. . Zhang, from. various uni-
versities in China; their suggestions have improved considerably the presenta-
tion of the text. I am grateful to many of my graduate students, specially
C. Waters, C. H. Hsu (the first edition), L. S. Krishnarao, Y. S. Lai, C. C. Tsui and
S Y. Zhang (the present edition) whase assistance in the form of dissertations
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and discussions has clarified considerably’ my understanding of the subject
matter. 1 am grateful to Mrs. V.. Donahue, C. LaGuardis, T. Marasco, and
F. Trace for typing various drafts of this text, to Mr. P. Becker of Holt, Rinehart
and Winston and the staff of Cobb/Dunlop for their assistance in the production
and to Professors S. H. Wang, K. W. You, and D. Z. Zheng, visiting scholars
from the People’s Republic of China, for their proofreading. My special
thanks go to my wife Beatrice and my children Janet, Pauline, and Stan]ey for
their support during the writing of this text.

Chi-Tsong Chen
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R[s]

p(A), rank A

Glossary of Symbols

End of the proof of a theorem.

This symbo! denotes the end of a statement or an
exaniple.

Capital boldface letters denote matrices.

Lowercase boldface letiers denote vectors.

Lowercase italic and Greek type denote scalar-valued
functions or scalars. Capital italic letters are also used
in Chapter 9 and Appendix G to denote scalars.
Laplace transform.

If a letter is used in both time and frequency domains.
circumflex will be used to denote the Laplace transform
such as ii(s) = £L{u(t)] and G(s) = L[G()]. faletteris
used in only one domain, no circumflex will be used,
for example, C(s).

The nullity of the constant matrix A.

The degree of the rational matrix’ é(s).

The transpose of the matrix A and the vector x.

The complex-conjugate transpose of the matrix A and
the vector x.

The determinant of A.

The field of complex numbers.

The field of real numbers.

The field of rational functions of s with coefficients in R.
The set ‘of polynomials of s with coefficients in R.

The rank of A. If A is a constant matrix, the rank is

XXi
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deg det A(s)
diag {A, B, C}

7A\

d d
faa(l,.
th=<dta")’

Z[A) 2 (Lhai))- ..

defined over C or R. If A is a rational or polynomial
matrix, the rank is defined over R(s).

* The degree of the determinant of A(s).

A diagonal matrix with A, B, and C as block diagonal
elements as

A0 O
0B O
0 0 C

where A, B, and C are matrices, not necessarily square
and of the same order.
Equals by definition.

When an operator is applied to a matrix or a vector,
it means that the operator is applied to every entry of
the matrix or the vector.
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