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PREFACE

The triumphant vindication of bold theories—are these not
the pride and justification of our life’s work?

-—Sherlock Holmes, The Valley of Fear
Sir Arthur Conan Doyle

The main purpose of our book is to present and explain mathematical methods
for obtaining approximate analytical solutions to differential and difference
equations that cannot be solved exactly. Our objective is to help young and
also established scientists and engineers to build the skills necessary to analyze
equations that they encounter in their work. Our presentation is aimed at
developing the insights and techniques that are most useful for attacking new
problems. We do not emphasize special methods and tricks which work only
for the classical transcendental functions; we do not dwell on equations whose
exact solutions are known.

The mathematical methods discussed in this book are known collectively as
asymptotic and perturbative analysis. These are the most useful and powerful
methods for finding approximate solutions to equations, but they are difficult
to justify rigorously. Thus, we concentrate on the most fruitful aspect of applied
analysis; namely, obtaining the answer. We stress care but not rigor.

To explain our approach, we compare our goals with those of a freshman
calculus course. A beginning calculus course is considered successful if the
students have learned how to solve problems using calculus. It is not necessary
for a student to understand the subtleties of interchanging limits, point-set
topology, or measure theory to solve maximum-minimum problems, to compute
volumes and areas, or to study the dynamics of physical systems. Asymptotics
is a newer calculus, an approximate calculus, and its mathematical subtleties
are as difficult for an advanced student as the subtleties of calculus are for a
freshman. This volume teaches the new kind of approximate calculus necessary to
solve hard problems approximately. We believe that our book is the first
comprehensive book at the advanced undergraduate or beginning graduate level
that has this kind of problem-solving approach to applied mathematics.

The minimum prerequisites for a course based on this book are a facility with
calculus and an elementary knowledge of differential equations. Also, for a few
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advanced topics, such as the method of steepest descents, an awareness of
complex variables is essential. This book has been used by us at Washington
University and at M.LT. in courses taken by engineering, science, and mathemat-
ics students normally including juniors, seniors, and graduate students.

We recognize that the readership of this book will be extremely diverse.
Therefore, we have organized the book so that it will be useful to beginning
students as well as to experienced researchers. First, this book is completely
self-contained. We have included a review of ordinary differential equations and
ordinary difference equations in Part I for those readers whose background is
weak. There is also an Appendix of useful formulas so that it will rarely be
necessary to consult outside reference books on special functions.

Second, we indicate the difficulty of every section by the three letters E (easy),
I (intermediate), and D (difficult). We also use the letter T to indicate that the
material has a theoretical as opposed to an applied or calculational slant. We
have rated the material this way to help readers and teachers to select the level
of material that is appropriate for their needs. We have included a large selection
of exercises and problems at the end of each chapter. The difficulty and slant
of each problem is also indicated by the letters E, I, D, and T. A good
undergraduate course on mathematical methods can be based entirely on the
sections and problems labeled E.

One of the novelties of this book is that we illustrate the results of our
asymptotic analysis graphically by presenting many computer plots and tables
which compare exact and approximate answers. These plots and tables should
give the reader a feeling of just how well approximate analytical methods work.
It is our experience that these graphs are an effective teaching device that
strengthens the reader’s belief that approximation methods can be usefully applied
to the problems that he or she need to solve.

In this volume we are concerned only with functions of one variable. We hope
some day to write a sequel to this book on partial differential equations.

We thank our many colleagues, especially at M.LT., for their interest,
suggestions, and contributions to our book, and our many students for their
thoughtful and constructive criticism. We are grateful to Earl Cohen, Moshe
Dubiner, Robert Keener, Lawrence Kells, Anthony Patera, Charles Peterson,
Mark Preissler, James Shearer, Ellen Szeto, and Scot Tetrick for their assistance
in preparing graphs and tables. We are particularly indebted to Jessica Bender
for her tireless editorial assistance and to Shelley Bailey, Judi Cataldo, Joan Hill,
and Darde Khan for helping us prepare a final manuscript. We both thank the
National Science Foundation and the Sloan Foundation and one of us, S. A. O,
thanks the Fluid Dynamics Branch of the Office of Naval Research for the
support we have received during the preparation of this book. We also ac-
knowledge the support of the National Center for Atmospheric Research for
allowing us the use of their computers.

Carl M. Bender
Steven A. Orszag
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PART

FUNDAMENTALS

I am afraid that I rather give myself away when I explain.
Results without causes are much more impressive.

Sherlock Holmes, The Stock-Broker’s Clerk
Sir Arthur Conan Doyle

Part I of this book is a synopsis of exact methods for solving ordinary differential
equations (Chap. 1) and ordinary difference equations (Chap. 2). Since our pri-
mary emphasis in later parts is on the approximate solution of such equations, it is
important to review those exact methods that are currently known.

Our specific purpose with regard to differential equations is to refresh but not
to introduce those concepts that would be learned in a low-level undergraduate
course. Although Chap. 1 is self-contained in the sense that it begins with the most
elementary aspects of the subject, the language and pace are appropriate for
someone who has already had some experience in solving elementary differential
equations. Our approach highlights applications rather than theory; we state
theorems without proving them and stress methods for obtaining analytical solu-
tions to equations.

The beauty of differential equations lies in their richness and variety. There is
always a large class of equations which exhibits a new behavior or illustrates some
counterintuitive notion. Unfortunately, many students, rather than enjoying the
abundance of the subject, are confounded and appalled by it. To those who view
the subject as an endless collection of unrelated methods, rules, and tricks, we say
that the collection is actually finite; apart from transform methods (see the Refer-
ences), it is entirely contained in Chap. 1. The reader who masters the material in
Chap. 1 will be fully prepared for any problems he or she may encounter.
And to those mathematicians who prefer to study the general properties of a forest
without having to examine individual trees, we are pleased to say that as we
progress toward the approximate study of differential equations in Parts II, III,
and IV our approach becomes far more general; approximate methods apply to
much wider classes of equations than exact methods.



2 FUNDAMENTALS

Our presentation in Chap. 2 is more elementary because most students are
unfamiliar with difference equations. Our treatment of the subject emphasizes the
parallels with differential equations and again stresses analytic methods of
solution.



(E)

CHAPTER

ONE
ORDINARY DIFFERENTIAL EQUATIONS

Like all other arts, the Science of Deduction and Analysis

is one which can only be acquired by long and patient study,
nor is life long enough to allow any mortal to attain the
highest possible perfection in it. Before turning to those
moral and mental aspects of the matter which present the
greatest difficulties, let the inquirer begin by mastering

more elementary problems.

Sherlock Holmes, 4 Study in Scarlet
Sir Arthur Conan Doyle

1.1 ORDINARY DIFFERENTIAL EQUATIONS

An nth-order differential equation has the form

y™(x) = F[x, y(x), y'(x), ... "~ P(x)], (1.1.1)

where y® = d*y/dx*. Equation (1.1.1)is a linear differential equation if F is a linear
function of y and its derivatives (the explicit x dependence of F is still arbitrary). If
(1.1.1) is linear, then the general solution y(x) depends on n independent pa-
rameters called constants of integration; all solutions of a linear differential equa-
tion may be obtained by proper choice of these constants. If (1.1.1) is a nonlinear
differential equation, then it also has a general solution which contains n constants
of integration. However, there sometimes exist special additional solutions of
nonlinear differential equations that cannot be obtained from the general solution
for any choice of the integration constants. We omit a rigorous discussion of these
fundamental properties of differential equations but illustrate them in the next
three examples.

Example 1 Separable equations. Separable equations are the easiest diflerential equations to
solve. An equation is separable if it is first order and the x and y dependences of F in (1.1.1) factor.
The most general separable equation is

¥(x) = alx)b(y). (1.1.2)
Direct integration gives the general solution
o odt x
' Ft) = [ a(s)ds + c,, (1.1.3)

where ¢, is a constant of integration. [The notation §* a(s) ds stands for the antiderivative of a(x).]

3



4 FUNDAMENTALS

Linear equations have a simpler and more restricted range of possible behav-
iors than nonlinear equations, but they are an important class because they occur
very frequently in the mathematical description of physical phenomena. Formally,
a linear differential equation may be written as

Ly(x) = f(x), (1.1.4)
where L is a linear differential operator:

d dn—l dn
szo(x)"‘Pl(x)a; +"'+Pn—1(X)W +d')'c;. (1.1.5)

It is conventional, although not necessary, to choose the coefficient of the highest
derivative to be 1. If f(x) = 0, the differential equation (1.1.4) is homogeneous;
otherwise it is inhomogeneous.

Example 2 Solution of a linear equation. The general solution of thc homogencous linear
equation

1+ x 1
y”_—y’+~y=0 (116)
X X

is y(x) = ¢, €* + ¢,(1 + x), which shows the explicit dependence on the two constants of integra-
tion ¢, and c,. Every solution of (1.1.6) has this form.

Nonlinear equations have a richer mathematical structure than linear equa-
tions and are generally more difficult to solve in closed form. Nevertheless, the
solution of many difficult-looking nonlinear equations is quite routine.

Example 3 Solutions of nonlinear equations. Two nonlinear differential equations which can be
routinely solved (see Secs. 1.6 and 1.7) are the Riccati equation

AZ
y=— —y’  Aisa constant, (1.1.7)
X
whose general solution is
x) 1+Ac,—e“/" (118)
X)=— 45— 1
Y x  x? ¢y +e**
and the equidimensional equation
V' =yyix (1.1.9)
whose general solution is
y(x)=2c; tan (¢, In x + ¢,) — L. (1.1.10)

There is a special solution to (1.1.9), namely y = c,, where ¢, is an arbitrary constant, which
cannot be obtained from the general solution in (1.1.10) for any choice of ¢, and ¢,. {See Prob.
12)

The rest of this chapter gives a brief theoretical discussion of the existence and
uniqueness of solutions to initial- and boundary-value problems and surveys the
clementary techniques for obtaining closed-form solutions of differential
equations like those in the above three examples.
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ORDINARY DIFFERENTIAL EQUATIONS 5

Systems of First-Order Equations

The general nth-order differential equation (1.1.1) is equivalent to a system of
n first-order equations. To show this, we introduce the n dependent variables
ylx) = d*y/dx* (k=0,1,2,...,n— 1). These variables satisfy the system of n first-

order equations
4 ) = yeax). k=0, n—2
dx Y Yi+1 > R s
4
dx Yn-1
Conversely, it is usually true that a system of n first-order equations

d
azszk(x, Z1s Z2s -+ vs Zn)s k=12,...,n, (1.1.11)
can be transformed to a single equation of nth order. To construct an equivalent
nth-order equation for z,(x), we differentiate (1.1.11) with respect to X, using the
chain rule and (1.1.11) for dz,/dx. We obtain
d? ) )
= A + z iﬁ( Ef(ll)(x9 Zyyenes Zn)'

—_— 7, =
2“1
dx ax k=1 aZk

(x) = F[x, Vos Y15 V2o o+ 5 Yn— l(x)]‘

Repeating this process (n — 1) times we obtain n equations of the form

d’ .
a;jzl =f(1”)(x, Zl,...,z,,), ]= 1,..., n, (1112)
J

where f© = f; and f{* V= af¥/ox + Y 5=1(0f /0z) fi- If these n equations can
be solved simultaneously to eliminate z5, z3, ..., Z, as functions of x, z,, dz,/dx,
d?z,/dx?, ..., d" 'z /dx""*, then the system (1.1.11) has been transformed to an
nth-order equation for z,. Can you construct an example in which the equations
(1.1.12) cannot be solved for z, ..., z,?

1.2 INITIAL-VALUE AND BOUNDARY-VALUE PROBLEMS

A solution y(x) to a differential equation is not uniquely determined by the differ-
ential equation alone; the values of the n independent constants of integration
must also be specified. These constants of integration may be specified in several
quite disparate ways. In an initial-value problem one specifies y and its first n — 1

derivatives, ¥, ..., Y"1, at one point x = x,:
y(xo) = aO,
V(xo)=ay, ..., (1.2.1)

y("~ 1)(x0) =0,



