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Preface

A fundamental role of quantum many-body theory, quantum statistical mechanics and
quantum chemistry methods in advanced nanomaterials and media design, and in par-
ticular, in the development of novel approaches to electronic structure engineering,
makes it highly desirable for graduate students and researchers working in physics,
chemistry, various fields of engineering, applied mathematics and computer science
to understand major ideas and practical applications of such methods. This book has
been written with a goal to help readers familiar with foundations of quantum theory
at least at a graduate level link their theoretical background to the state of the art in the
field of virtual (that is, quantum many-body theory-based, computational) synthesis
of materials and media by design, its numerical methods and its software, to be able to
apply their theoretical knowledge to solve practical problems.

Material included in this book is not intended as a review in the fields of science
and engineering concerning synthesis of materials and media by design. Instead, the
book provides only necessary conceptual, methodological, and software information
to enable a reader to use the virtual synthesis method in practice. Part One of the
book is devoted to theoretical foundations and consists of two chapters. Rigorous
quantum statistical mechanical methods allow calculation of measurable properties of
quantum systems using information on their structure, composition and conditions
of their synthesis (such as the presence of quantum confinement). Descriptions of
such methods and their results can be found in extensive literature accumulated since
the late 19 century. Unfortunately, the majority of these methods has been derived
to address spatially uniform systems, and thus is not applicable without the use of
additional ad hoc assumptions to the case of small and/or strongly inhomogeneous
systems, such as small quantum dots or wires, where a characteristic size of the sys-
tem is of the same order as that of its constitutive units. This makes results obtained
by applications of the standard quantum statistical methods to spatially non-uniform
systems ambiguous and inconclusive. The only existing family of quantum statistical
mechanical methods capable of providing reliable description of strongly spatially
non-uniform systems is the first-principle projection operator methods. These meth-
ods and their results are discussed in Chapter 1. The chapter is unique in that that it
links two of the first-principle projection operator methods and discusses their results
from a standpoint of their use in quantum system design.

Notably, applications of all quantum statistical mechanical methods (projection
operator-based, or otherwise) for purposes of (nano)materials synthesis by design rely
on quantum many-body theoretical methods that provide information on the structure
factors (such as electronic energies, correlation functions, Green’s functions, etc.) of
studied systems. The latter are used in quantum statistical mechanical formulae (de-
rived using projection operator or other methods) to calculate measurable properties of
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many-body systems. Quantum chemistry codes realize some of such quantum many-
body theoretical methods and implement them in the form of so-called first-principle
quantum chemistry software. Chapter 2 of this book contains an overview of quantum
many-body theoretical methods used in quantum chemistry, and their corresponding
implementation. It also briefly outlines the existing first-principle quantum chemistry
software. Quantum many-body theoretical methods of Chapter 2 can also be used on
their own, if only the basic electronic and structural information on a system of inter-
est is needed.

Part Two of this book is devoted to applications of the first-principle methods dis-
cussed in Part One to design virtually about 40 small systems composed of semicon-
ductor compound and transition metal atoms, and Ni- and Co- oxides. The equilibrium
structure, electronic energy level structure (ELS), molecular orbits, the charge and
spin density distributions (CDDs and SDDs) of the nanostructures [or molecules, from
a chemical point of view] of about 1 to 6 nm in linear dimensions virtually synthesized
in model quantum confinement or in “vacuum” (i.e., in the absence of any external
fields or foreign atoms) are discussed in detail. Each of Chapters 3 to 8 included
into Part Two can be worked with independently of the rest of the book content. How-
ever, an inexperienced reader is strongly advised to familiarize him/herself at least
with Chapter 2 of Part One, to understand physical and chemical meaning of the results
discussed in Chapters 3 to 8. Readers who are well familiar with quantum statistical
mechanical, many-body theoretical and computational quantum chemistry methods
will benefit from a unique description of projection operator-based quantum statistical
methods outlined in Chapter 1, overview of computational methods in Chapter 2, and
their applications described in Part Two of the book.

The book website booksite.elsevier.com/9780123969842/ and the corresponding
webpage of the website www.PermaNature.com contain an additional Chapter 9 avail-
able only electronically for a free download. This chapter describes results of virtual
synthesis by design of small cobalt oxide quantum dots. Chapter 9 also is independent
of other chapters included in Part Two. The website www.PermaNature.com has a
forum page and contact pages that can be used to communicate with the author. More-
over, both websites include free downloads containing 14 files (a brief description of
these files can be found in Appendix “Examples of Virtual Templates of Small Quan-
tum Dots and Wires of Semiconductor Compound Elements” at the end of the book)
that can be used to configure input files for GAMESS software modules. Readers are
encouraged to use such input files to (1) repeat some results of the author, (2) attempt
higher-order approximations as applied to the systems investigated by the author, and
(3) modify author’s setups and attempt virtual design of other systems of interest.

My research discussed in this book significantly benefitted from advice and en-
couragement of outstanding physicists and chemists whom I had a privilege to col-
laborate with. In particular, the content of Chapter 1 has been refined in enlightening
discussions with my teacher Yu. A. Tserkovnikov (Steklov Institute of Mathematics,
Russian Academy of Sciences, Moscow, Russia) who was one of the brightest students
of Nikolai N. Bogoliubov, and one of the greatest scientists ever worked in the fields of
quantum statistical mechanics and its mathematical foundations. My interest in appli-
cations of the quantum many-body theoretical methods to semiconductor compound
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systems has been stimulated by F. Szmulowicz (University of Dayton Research
Institute, Dayton, OH) and W. C. Mitchel (Air Force Research Laboratory, Dayton,
OH). Enthusiasm and support of A. T. Yeates and D. Dudis of the Air Force Research
Laboratory in Dayton, OH, encouraged my involvement with quantum chemistry, and
my appreciation of its virtues and exquisite charms. The virtual synthesis method has
been developed and realized in close collaboration with these esteemed colleagues. I
had many insightful discussions of magnetic properties of nanosystems with Y. Qiang,
and mathematical methods of many-body quantum theory with R. Machleidt and F.
Sammarruca-Machleidt during my years with the University of Idaho in Moscow, ID.
Several of my students, notably C. Mavromichalis (BoiseLAN, Boise, ID), contrib-
uted to research described in Chapters 7 and 9. Encouragement and understanding of
my husband G. M. Tsoy (University of Alabama at Birmingham and IPG Photonics,
Birmingham, AL) have made my work on this book, and our joint life in physics in
general, an exciting and unforgettable experience. My heartfelt gratitude goes to these
great scientists, colleagues and friends.
Liudmila A. Pozhar
ChiefScientist@PermaNature.com
LPozhar@yahoo.com
PermaNature, Sterrett, AL
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Transport Properties of Spatially
Inhomogeneous Quantum Systems
From the First Principles

1.1 Introduction

Since Gibbs and Boltzmann, statistical mechanics has been focused on the first-prin-
ciple prediction of thermodynamic and transport properties of many particle systems.
The majority of models and mathematical methods of statistical mechanics are de-
signed to work in so-called thermodynamic limit where the number of particles (N)
and the system volume (V) simultaneously tend to infinity, while their ratio remains
finite. Another important concept concerns the initial state of a many-particle system
that is assumed to be the thermodynamic equilibrium corresponding to the minimum
minimorum of the total energy of the system. These two concepts validate rigorously
the use of theory of stochastic processes and mathematical statistics methods to reduce
a system of 6N coupled equations of motion (in the simplest case) for the system par-
ticles to one equation of motion of the entire system formulated with respect to the N-
particle distribution function of the system (classical Liouville equation) or the N-par-
ticle density matrix (the von Neumann, or quantum Liouville equation), respectively.
At the next step, perturbation theory, DFT or projection operator methods are used to
reduce the Liouville, or von Neumann (in the quantum case) equations to the so-called
master equation for collective dynamical variables or observables, respectively, that
can be further reduced to a manageable system of coupled equations for correlation
functions or Green’s functions (GFs). Further on, the equations for conserved col-
lective dynamical variables (observables) are derived, and the thermodynamic and/
or transport properties are identified in terms of the correlation functions and/or GFs.
Thus, once the correlation functions or GFs are determined, the thermodynamic and
transport properties of the N-particle system can be calculated directly.

With advent of novel technologies of materials and media synthesis there is a grow-
ing demand for updating the fundamental basis of statistical mechanics to account for
small and/or strongly spatially inhomogeneous systems. Such first-principle statistical
mechanical foundation is especially important to design novel materials for quantum
electronics, spinstronics, quantum computing, communication, information process-
ing and storage technologies. In particular, fundamental understanding of coherent,
polarized, and entangled charge and spin states of quantum particles, their dynamics,
and their contributions to quantum spin/charge transport properties at realistic materi-
als synthesis conditions, such as quantum confinement, is paramount [1-5] to establish
novel electronic materials technologies. In other words, relations between the struc-
ture, and thermodynamic and transport properties of materials and media, must be
established using first principle quantum statistical mechanical methods.

Virtual Synthesis of Nanosystems by Design. http://dx.doi.org/10.1016/B978-0-12-396984-2.00001-7
Copyright © 2015 Elsevier Inc. All rights reserved.



4 Virtual Synthesis of Nanosystems by Design

At present, solid state electronic structure theory [6—10] largely employs somewhat
modified statistical mechanical foundation specific to bulk solid lattices and various
half-heuristic methods [11] to identify systems exhibiting new electronic properties,
such as quantum wells, large quantum wires [12] and quantum dots (QDs) [13]. In the
case of small structures, such as small QDs, where statistical mechanical approaches
so modified do not work, computational methods, such as DFT- and Hartree-Fock-
based (HF) methods, self-consistent field (SCF) approximations, configuration inter-
action (CI) methods, complete active space SCF (CASSCF), multi configuration SCF
(MCSCF), Mgller-Plesset - and coupled-clusters approximations are used to calculate
the electronic energy level structure directly solving the Schrodinger equation nu-
merically. [These methods will be briefly discussed in Chapter 2.] At present, the
corresponding software packages, such as GAMESS, NWChem [14], GAUSSIAN or
Molpro, allow the electronic structure calculations for systems in equilibrium at zero
temperature. In addition, equilibrium and non-equilibrium molecular dynamics (MD)
simulations are widely used to study structure-property relations at non-zero tem-
perature. In particular, the spin/charge transport processes are simulated using MD or
Monte-Carlo means in the Born-Oppenheimer approximation. In the case of numeri-
cal calculations and MD simulations, correlations between the electronic structure
and the transport properties are introduced heuristically, adjusting the statistical me-
chanical and semi-phenomenological approaches developed for large systems. Such
computations, on their own, do not permit first-principle predictions of the spin/charge
transport properties of small QDs and molecules. Yet accurate first-principle predic-
tions are crucial to manipulate with electron spins and quantum states of energy and
information carriers in small QD/QW systems.

In their turn, existing semi-heuristic modifications [15-23] of various theo-
retical models developed originally for much larger systems at low temperature
conditions and applied to characterize charge and spin transport in small sys-
tems often lead to physically incorrect predictions even for mesoscopic tunneling
junctions [24]. Even the best of such models do not include adequate description
of system-to-confinement coupling, such as quantum confinement effects. At the
same time, such coupling is one of the major sources of both decoherence and
coherence [25,26] of states of quantum particles, such as the electron charge and
spin states [27-29]. Thus, the nature of such models does not allow, in principle,
first-principle predictions of electronic and spin/charge transport properties of
small and strongly spatially inhomogeneous systems.

As already mentioned in the beginning of this section, first-principle predictions of
electronic transport properties imply the use of specifically tailored quantum statisti-
cal mechanical methods to derive self-consistently the spin/charge transport theory
from the quantum Liouville (von Neumann) equation. Thus far, this formidable task
has been properly addressed only for mesoscale systems where non-equilibrium GF
(NGF)-based methods [such as Keldysh’s two-time NGF [30-32] and more recent
DFT-NGF approaches [33]] are among the most adequate statistical mechanical tech-
niques used. Unfortunately, these methods have several major disadvantages. In par-
ticular, the field-theoretical NGFs used in the majority of these approaches are not
directly related to the transport coefficients. Thus, despite the availability of a system



