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Safety Education

Safety education is the study of those human,
hine, and envi | variables which interact

to affect the probability of injury or illness to Fecple

or damage to property; it embraces a host of situa-

Comparable legislation exists in England (Health
and famy at Work Act 1974), France, the Federal
Republic of Gemga;lg, and Sweden (Working
Environment Act 1977). Each of these acts also
requires education and training of workers in safe
pro_[ﬁnm,

tions involving people, such as work,
sport, transportation, home, and natural and hunm?-
created disasters; it encompasses not only the sa

roduction of goods or delivery of services but the
integrity of the products th inthe "
environment.

The modern study of safety has taken much from
the discipline of public health and the epidemio-
logical techniques associated with it. This approach
recognizes that accidents are one of the most serious
of public health problems, that their causes are
usually complex, that they are foreseeable, and that
they are not caused solely by the acts of people
because machines and environmental factors, in their
broadest sense, are also usually involved.

One need for the formal study of accidents devel-
oped as an outgrowth of laws relating to working
conditions and workers' compensation insurance pro-
grams in Europe and the United States. This move-
ment of the late nineteenth and early twentieth cen-
tury created an awareness of the human toll and costs
of occupational injuries and provided the motivation
to reduce accidents. The National Safety Council was
formed in the United States in 1912 and provided
-educational services covering the extent and variety
of safety p areas. Educational programs were
started in some schools in the United States in the
1920s, and the Center for Safety Education at New
York University was founded in 1938, with Herbert

P that offer workers’ com-
pensation coverage have pioneered safety and health
training for w-rkers and management. They also
provide consul..tion to reduce work accidents for the
mutual benefit of insurer and policy holder.

Various professional izations, such as the
American Society of Safety Engineers, the American
Industrial Hygiene Association, the Safety Systems
Society, and England's Royal Society for the Pre-
vention of Accidents, among others, serve a strong
educational functi by  publishi hni
] Is, holdi ings, and ol‘féring short
curses.

In the elementary-school curriculum, safety edu-
cation is often woven into other subjects by examples
of safe human behavior in such activities as crossing
ereets.ridir:jg"‘ ycles, or using belts in vehicl
and by fire drills. Safety education in United States
high schools culmi in driver education ly
consisting of 30 hours in the classroom and 6 hours
of driving. The latter is sometimes augmented by
some hours in simulators and on ranges away from
other traffic to learn how to control the car. In most
countries, except the United States, driver education
is do)ne informally or by commercial schools (OECD

A number of research studies on the effects of
driver education on accidents have been done in the
ijtled States (McGuire and Kersh 1971) and in

J. Stack as its director, to d
ﬁ:wide training of safety professionals. Amos E.
yhart of Pennsylvania State University pioneered

driver education for high-school students in the-

United States.
In 1970 the United States legislature passed the
Occupational Safety and Health Act (0sHA) which
Ited in the p ion of many safety and

igland (R d et al. 1973). Those studies that
have used aj iate control have not found
consistent benefits of driver education on measures
related to accidents or violagions. There are also

! prog now in yele rider edu-
cation and training for novice riders, using curricula
based on a task-analysis approach (Mr.lgni;ht and
Heywood 1974) in the United States; other courses

health standards in the United States ind
upheld br inspection of work places by OSHA per-
n pecti initiated by

are available on a more limited scale for experienced
;iqersJ. Similar programs exist in the United

sonnel, addition to i
request, usually by workers, OsHA personnel peri-
odically inspect at random those industries (and now
also government facilities) having the j:mcntia] for
heaith } Is or relatively high acci | injury
reports. A key aim of the OSHA program is to educate
workers and in various f health
and safety in industry, mining, and construction.

Some universities offer de, ams in safety.
In the United States, the Bgu;d Earfogeniﬂed 5.[3,
Professionals (BCsSP 1982) has recommended a cur-
riculum for the baccalaureate degree in safety, which
puts a heavy emphasis on the physical sci , math-
ematics, communications skills, human
nomics, and basic concepts of industrial safety and
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hygiene. This suggestedgurriculila¥eflects the grow-
ing techni plexiLy of the

safety pro e used to
hazards (e. g . udi" puwer] e cl’ten technwally
C lex and requirg ds of analy-
sis to forecast the risks,

A major aspect of safety education is to teach the
methods of collecting data that provide indices of
the level of safety and measures of the exposure
of people, so that the risk associated with various
situations can be quantified. Quantification of the
level of safety is necessary to determine if a need
exists for corrective action, to indicate the kinds of
corrections that should be npphod and to e\rlhute

tical constraints on research resources, the social
scientist is usually lnmned to the study of a sample
rather than a coverage of the pop
for which these gencrahm;ons are appmpna!e Pro-
vided that scientific sampling procedures are em-
ployed the use of a sample often pm\qdes many
2 ed with a ¢
reduced costs iated with ob andanalyzmg
the data, reduced per-
sonnel to conduct the fieldwork, greater speed in
most aspects of data mampulatlon and summari-
nu.on and ;mater accuracy due to the possibility of
sllfe rvision of fieldwork and data preparation.
Kiali (1965) has divided the social science research
in which samples are used into three broad

tllelreffemveness T‘huu, ﬁoreumgle the A

Z16.1 defines some
aspects of industrial accidents in ive terms
such as by frequency and séverity of injury rates.
These measures are & by of costs
and benefits 1o realize the most benefit for the finan-
cial investment and by cost-effectiveness analysis to
choose the most effective mrecﬁve action for the
cost invested. Systems analytic ves, such as
fault-tree analysis, are now a part of the education
of safety professionals.

While much mphlm is still
the education of safety | bht-dccnmpu

relutﬁd to :I;ed climination of haﬂn!l—::ddlﬂ:
machine gu , materials handling,
?ufe'ty——lhe de‘ve nt of new echnol

the safety staff in sophisticated techniques for the
control and reduction of injuries and ilnesses caused
by hazards in the human environment.
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Sampling
Social science h is aimed at developing useful
generalizations about society and the ways in which

individuats behave in society, However, to prac-
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categories: (a) ex) nts—in which the treatment
variables are deliberately introduced and all
extraneous variables are either controlled or ran-
domized; (b) surveys—in which all members of a
defined population have a known nonzero probability
of selection into the sample; and (c) investigations—
in which data afe collected without either the ran-

domization of experiments or the probability sam-
pling of surveys. g: ents are strong with respect
to internal vahd‘ag use they are concerned with
the g atrue of the effect

of 2 mnm variable has been uhmned forr the

mongndlhmspmtuemmlval 3b=umedwy
are concerned with the question of whether the
ﬂmhnpohwndfmmesubm in the survey may

enlnve rml)r
Whﬂnmﬂemmdbﬁuaﬁem
sce experimental in an ind
fashion, with a allowances for extraneous
vamblu ll’netgm\domly selected portions of a large

and population
ﬁellm mvolwdm quanﬂ)‘m‘mrnc-
rese experiments so as m investigate causal
tehtiomups within specific populations have often
inquemomuftlmph design being largely
discussion of sample for edu-
'“mn..mﬂn.ﬁmé‘?““mm

rvey approach and its application to large-scale
cdwamnl studies. However, the issues which have
bemruedhvedirectbunngonthe conduct of
lpmm!ul bemse the distributions of

in causal




systems, like the distributions of these c!fmctell-islics
taken alone, exist only with reference to particular
pupulations.

1 Populations

The populations which are of interest to educational
researchers are generally finite populations that may
be defined jointly with the elements that they contain.

In Australia it was'decided that, for certain admin-
istrative reasons, the stady would be conducted only
within six states of Australia and not within the
smaller Australign territories. It was also decided
that only students in those school grade levels which
oomam%d the majority of 14-year-old students would
be tested.

The desired Australian target population was
threfore reformulated in order to obtain the defined
fi A lian target populati

A population in educational research is th '
usuaIlF)". the aggregate of a finite number of elements,
and these elements are the basic units that comprise
and define the population,

Kish (1965) stated that a population should be
described in terms of (a) content, (b) units, (c)
extent, and (d) time. For example, in a study of
the characteristics of Australian secondary-school
students, it may be desirable 1o spen‘?( the popu-
lations as: (a) all 14-year-old students, (b) in secon-
dary schools, (c) in Australia, (d) in 1985.

In order to prepare a description of a population
1o be considered in an educational research study it
is important to distinguish between the popul
for which the results are desired, the desired target
population, and the population actually covered, the
survey population. In an ideal situation these two

pulations would be the same. However, dif-
erences may arise due to noncoverage: for example,
for the population described above, a list may be
compiled of schools during early 1985 which acci-
dentally omits some new schools which begin oper-
ating later in the year. Alternatively, differences may
occur b of p at the data collection
stage. For ple,a of Is having large
concentrations of educationall Jed }
might be unwilling to participate in the study (see
Data Analysis: Nonresponse).

Strictly speaking, only the survey population is
represented by the sample, but thisdpopuln!inu may
be difficult to describe exactly and therefore it is
often easier to write about the defined target popu-
lation (Kish 1965). The defined mﬁu tion

tion which

All students aged 14.0-14.11 years on 1 August 1970 in
tb:dzhuwing Australian states and secondary-school

[ .

New South Wales  Forms I, I, and 111

Victoria Forms 1, 11, 113, and 1V
Queensland Grades 8, 9, and 10

South Austratia Ist year, 2nd year, and 3rd year
West Australia Years 1,2, and 3

Tasmania Years |, 11, 111, and IV.

The majority of students in the excluded -
lation were 14-year-olds who were in e ms
which were outside the ranges in the
description of the defined target population. The
students in the “other territories” of Australia
A lian Capital Territory and Northern Ter-
ritory) were excluded because of certain admin-
istrative and cost constraints which were placed on
the study. -

2. Sampling Frames
Gincd taget ppuleion et b ot e
ed target atjon must be assem into
sampling frame, !rma.mally!ate:
the hyﬂl"a:;.hdmk'hk :Edm
means by which the researchey is able to “take u
of the defined target ion. The entries in the
sampling frame may refer to the individual elements
for example, student;).or groups of these elements

des;lfﬁnn rovides an operational
is used to guide the construction of a list of p pulati
elements, or san_;gling frame, from which the sample
may be drawn. The elements that are excluded from
the desired target population in order to form the
defined target population are referred to as the
excluded population. '

For example, during a cross-national study of
science achievement carried out in 1970 by the
I ional / iation for the Evaluation of Edu-
cational Achievement (1EA), one of the desired Aus-
tralian target populations for the study was described
as-

sl stodents aged 14.0-14.11 years at the time of testing.
This was the last point in most of the school systems in
iE4 where 100 percem of an age group were still in
sompulsory schooling. (Comber and Keeves 1973 p. 10)

{for example, schools, .

In practice, the i fmneismo:e\haném
8 list because the are normally arranged in
an order which corresponds to their mambersieip of
certain strata. For example, in a series of large-scale
studies of educational achi nt carried out in
21 countries during the early 19705 (Peaker 1975),
sampling frames were comstructed which listed
schools according to their size (number of students .
type (for example, comprehensive or selective),
region (for , urban or rural), and sex com-
position (single sex or coeducational). The use of
strata during the preparation of a sampling frgu is
often undertaken in order to ensure that dafa are
ubtmmﬂmhmummm,
and more sccurately ussess, the characteristics of
both individual and combined strata.

an
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3. Probability Samples and Nonprobability
Samples

There are usually two main aims involved in the
conduét of sample surveys in educational research:
(a) the estimation of the values of po}mlmon attri-
butes (parameters) from the values of sample attri-
butes g:allsucs), and (h) the testing of statistical

two aims ruqunre that the researcher has some knowl-
edge of the accuracy of the values of the samp}e
statistics as esti of the pop

. Knowledge of the accuracy of these estimates may
generally be derived from statistical theory d
that probability sampling has been employed. Prob-
ability sampling requires that each member of the
defined target population has a known, and nonzero,
chance of being sclemd imo ﬂn nmple ‘I‘he accu-
racy of 1 |I|ty
sampling methods cannot be dlmvmff from t
internal e\nderlloe ofa mngle sample.

ility in

has rmm]y taken the form of]udsmem sampllng m

were drawn from this population and the pl
mean calculated for each sample then the aver
of the sampling distribution of sample means, t
expected value, could be denoted by E(2).

The accuracy of the sample statistic, £, as an esti-
mator of the population parameter, u, may be

ized in terms of the mean square error (MSE).

The MSE is defined as the age of the sg of
the deviations of all possible sample estimates from
the value being estimated (Hansen et al. 1953).

MSE [£] = E[# — u]*

= E[z - E@)J + [E(2) - u}
= Variance of £ + [Bias of i

A sample design is unbiased if E(¥)=p It is
important to remember that “bias” is not a property
of a single sample, hnl of the entire sampling dis-

, and that it b neither to the selection
nor :hg estimation pmerlrc alone, but to both
jointly.

~ The reciprocal of the variance of 2 sample estimate

8]

which expert choice is used to guide the
typical or Th pl ruay

y referred to as the precision, whereas

be better than probability samples, or they may not.
Their &uallty cannot be determined without knowl-

the relevant population parameters and if
these parameters were known then there would be
no need to select a sample.

The use of judgment samples in educational
research is sometimes carried out with the (usually
1mpl|ed] justification that the sample represents a

hetical universe rather than a real population.

is justification may lead to reuem:h results which
are not ingful if thegs this hypo-
thetu:ll umvcrs: and any real population is too large.
bility les are not appropriate for

the ip
to as the
For most well- densnedsam les in educational sur-
vey research, the sampling bias is either zero or
smnli—undlng towards zero with increasing sample
a.ccur:? of sample estimates :nt%erefort
neral] in terms of the sampling variation
of the va.lues of £ around their expected value E(£).

41 ﬂlArtumcyq Individual Sample Esti
The is usually dealing with a
single sample of data and not with all posmhknmpl:s
from a population. The variance of a sample enmme
a5 & of cannot th

| of the mean square error is referred

deﬂuﬁ ob]ectlvely with the aims of ion and
esis testing, they will not be examined in the
following discussion.

4. Accuracy, Bias, and Precision

The sample estimate derived from an
is inaccurate to the extent that it dlgen from the

population parameter. Generally, the value of the
mpulation parameter is not known and therefore

of an

cannmbe 1 d, through a knolvledge of
the behaviour of estimates denvc}ﬁmmallpodhle
wumwmwmhmhmk Mpop\lllﬂun:y
using the same e lmpowle
Iﬂmﬂlcrw of the ob
ple estimate.

For example, consider a random of n
elements which is used to calculate the mean,

£, umnnmnudme\'llnedlhpopnhnonmn,
. If an infinite set of independent samples of size n

4372

be calculated exactly. metely, statisticians have
denved some formulas which provide estimates of
the ofasingle

d on the internal evid
sample of data.

For a simple random sample of n elements drawn
without acement from a population of N
£lements, the variance of the sample mean may be
emumed from a single u%le of dntn by using the
following tormull

—ng
n 2)

where s = Z(x; - £)¥/(n — 1) is an unbiased estimate
of the variance of the element values, x;, in the

var(x) = N

Note that for :ufﬁmently large values of N, the
variance of the slmplemean may be estimated by
s' n  because finite population correction,

n)/N m\d: to unity.

w;« research situations, the
of the estimated mean is
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approximately normally distributed. The approxi-
mation improves with increasing sample size even
though the distribution of elements in the parent
population may be far from normal. This charac-
teristic of the sampling distribution of the sample
mean is associated with the “central limit theorem™
and it occurs not only for the mean but for most
estimators commonly used to describe survey
research results (Kish 1965),

From a knowledge of the properties of the normal
distribution, it is possible to be “68 percent confident”
that the range %+ V[V(#)] includes the popula-
tion mean, where £ is the sample mean obtained
from one snmr'le from the population. The guantity
VIV()] is called the standard error, SE(Z), of the
sample mean, . Sim“ﬂ!{' itis known that the range
£ = 1.96 sE(£) will include the population mean with

Schools Sehood | School 2 Schooi 3

Cossorms Class | Closs2 Closs 3 Closs4 Com 5 Closs 6

AN NMNMNMNNMN

Students | 23 45 67 8 9101112 13K 156 1718

Figure 1 ) .
Hypothetical pop of eigl dents grouped
into six classrooms and three schools

the same for all students (/3 x 1/2 x 2/3 = 4/18).
Similarly, a simple random sample of four students
from the population of 18 students would also provide
an epsem sample in which the probability of selection
would be the same for all students (4/18). Epsem

ling is widely used in survey research because it

95 percent confidence, The calcul of confid
limits for estimates allows researchers to satisfy the
estimation aim of survey research. Also, through the
construction of difference scores d = #, — %, and
using a knowledge of the standard ervors SE(£,) and
SE(£;), the statistical hypothesis aim may be satisfied.
It should be remembered that, alth, this discus-
sion has focused on sample means, confidence limits
could also be set up for many other dpopulation values,
which, for example, are estimated by &, in the form
¥ = (V[V(5)]. The quantity ¢ represents an appro-
priate constant whi;ln is usually obtained from the
normal distribution or under certain conditions from

usually results in self-weighting samples. In these

ples an unbiased esti of the population mean
may be obtained by taking the sirane average of the
sample cases.

It is important to remember that the use of prob-
ability sampling does not automatically lead to an
epsem sample. Probability sampling requires that
each element in the population has a known and
nonzero chance of selection which may or may not
be equal for all elements. There are many examples
in the li which d ate that educational
researchers often overlook this point, For example,

the ¢ distrit For most samy

tered in practical survey research, assumptions of
normality lead to errors that are small compared to
other sources of inaccuracy.

5. Multistage Sampling

A population of elements can usually be described
in terms of a hierarchy of sampling units of different
sizes and types. For example, a population of school
students may be seen as being composed of a number
of classes each of which is composed of a number of
students. Further, the classes may be grouped into a
number of schools,

The hypothetical population of school students
in Fig. 1 shows 18 students distributed among six
classrooms (with three students per class) and three
schools (with two classes per school). .

From this population a multistage sample could be
drawn by randomly selecting two schools at the first

one popular sample design in educational research
has been to select a simple random sample of, say, a
schools from a list of A schools, and then select a
simple random sample of b students from each selec-
ted school.

The probability of selecting a student by using this
design is ab/4 B,, where B, s the size of the th school

the

T Consequently, from large
have less chance of selection and the simple
average of sample cases may result in biased esti-
mates of the population mean—especially if the mag-
nitudes of the B, values vary a great deal and the
survey variable is correlated with school size.

6. Stratification

The technique of stratification is often em d in
the preparation of sample designs for educational
survey h b it g lly provid
increased lpm:is‘jop in sample estimates without lead-

stage, followed by randomly g one cl

from each of the selected schools at the second stage,
and then randomly selecting two students from each
selected classroom at the third stage. This three-
stage sarnrle design would provide a sample of four
students. It would also rm\u‘de a sample which is an

ing to increases in costs. Stratification
does not imply any departure from probability sam-
pling—it simply requires that the population be di-
vided into su?potpgatixl! l:.al!ed strata s.ndlthai mthein

L3 L LA o Wil N
each of these strata. The sample estimates of popu-

epsem sample (equal probability of sel

lation are then obtained by combining

method) (Hansen et al. 1953). That is, the probability
of selecting any student in the population would be

the information from each stratum.
Stratification may be used in survey research for

an
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reasons other than obtaining gains in sampling pre-
cision. Strata may be formed in order to employ
different sumple designs within strata, or because the
subpopulations defined by the strata are designated
ax separate domains of study. Some typical variables
used to stratify populations in educational research
are: school location (metropolitan/rural), type of
sthool (government/nongovernment), school size
(lurge/mediumy/small), and sex of pupils in school
(males only/females only/coeducational).

Stratification does not necessarily require that the
sume sampling fraction is used within each stratum.
1t uniform sampling fraction is used then the sample
design is known as a proportionate stratified sample
hecause the sample size from any stratum is pro-
portional to the population size of the stratum. If
the sampling fractions vary between strata then the
obtained sample is a disproportionate stratified
sample. The simple random sample design is called
a se{f‘-weighting esign because each element has the
same probability of selection equal to n/N. For this
design, each element has a weight of 1/n in the mean,
I in the sample total, and F = 1/f in the population
total, where f = n/N is the uniform sampling rate for
all population elements (Kish 1965 p. 424).

In a stratified sample design of elements, different
sampling fractions may be employed in the defined
strata of the population. The chance of an element
appearing in the sample is specified by the sampling
fraction iated with the in which that
element is located. The reci of the sampling
fractions, which are sometimes called the raising
factors, describe how many elements in the popu-
lation are represented by an element in the sample.
At the data analysis stage either the raising factors,
ar any set of numbers proportional to l!rlc{:, may be

In order to make the sum of the weights equal to the
sample size, n, both sides of the above equation will
have to be multiplied by a constant factor of n/N.
That is:

M L fi | ents)
(n] N+ fornelem

Ny n
+ ('!1 Nt hm,elemems) n (4
Therefore the weight for an element in the hth stra-
tum is Nyfny-n/N.

An estimate of the variance of the sample mean,
Xy, for the stratified random sample design described
above may be obtained from the following formula
(Kish 1965 p. 81):

var (£,) = %;M."-"n!i

N, ; (5)

where
A= (= o - 1)

is the variance of the simple random sample of n,
elements in the hth stratum.

Note that for fixed values of n, n,, N, and N;, the
precision depends upon the sum of the s} values
across strata, If the stratification procedures ase

extre, successful then element values within
strata will be similar and consequently the mag-
nitude of var(#,) will be small. For the special case
of ionate stratified random sampling of

proportiona
e]amtﬁ“m values of ny/N,, mhequll to n/N for alll
strata, element weight in this special case is
for all sample elethents.

used 1o assign to the el
of proportionality makes no difference to the sam;
estimates. However, in order to avoid confusion
the readers of survey research reports, the constant
i usually selected so that the sum of the weights is
equal to the sample size.

For example, consider a stratified sample design
of n el ts which is applied to a lation of N

Kish (1965 p 88) has listed several aspects of a
h study which benefit from using proportion-

ate random sampling of elements from the strata:
(a) sampling precision—the variance of the sample
estimate of the mean cannot be greater than for an
unstratified sample of the same size; (b) admin-
ion—proportionate all can typically be
done simply and easily; and (c) analysis—pro-

clements by selecting a simple random sample of n,
clements from the hth stratum containing N,
elements. In the Ath stratum the probability of se-
lecting an element is ny/N,, and therefore the raising
factor for this stratum is Ny/n,. That is, each sel

- leads to self-weight-
ing designs. ! o

7. The Comparison of Sample Designs
In a previous section it was shown that, for the

P Nyny el ts in the populati
The sum of the raising factors over all n sample
elements is equal to the population size. If there are
two strata for the sample design then:

| N,
{,‘5”1 +=—+...forn, elemelm)
o m
‘N, N, )
+[ﬂ—f+;§+...iuru,elemems)=hf [€)]

¥p pop in Fig. 1, eithier a three-stage
mdummaﬁm*nndomnm design
. be used to select epsem samples of the same
size. However, equality of selection probabilities in
thetl:_‘ ﬁer d 1:;1‘;2 that the vari-
ances of sample estimates obtained from each design
will be Ibfe] %e.

7 suggested that sample designs could
be described and redinmrmsoflhse?rsefﬁci-
ency. For example, one sample design, denoted j,
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may be compared to another sample design, denoted
;) byymmidcgins the inverse of the variance of sample
estimates for the same sample size. Using E to rep-
resemr.h_cc!‘ﬁcimcyofuau‘ﬁ:dm for the sam
mean, and n to represent size, the effi-
ciency of these two sample designs can be compared
by constructing the following ratio:

E;  Var(x)

5T V—L“{m (n = n) (6)

More recemly, Kish (1965) recommended that the
simple random sample design should be used as a
standard for quantifying the el'ﬂciu?‘ of other types
of more cotgrlex sample designs. Kish introduced
the term Deff (design effect) to describe the ratio of
the variance of the sample mean for a complex sam-
ple design, denoted ¢, to the variance of a simple
random sample, denoted srs, of the same size:

Var(x,)

Deff = Var(i,,) (. = n..,? (M
The values of Deff for sample means and multi-
variate statistics, such as correlation coefficients and

regression coefficients, have been found to be greater
than unity for many sample designs which are com-
monly used in educational survey research (Peaker
1975, Ross 1978).

8. The Effective Sample Size

. the effective sample
size is, for the variable under consideration, the size
of the simple random sample which would have the
nmummuﬂnm&p‘ ! .,
consider a population of N students. If 4 ¢o

sample design is used to select dn epsetn of
n; students, then the variance of the sample m

\far(f,] may be written as: | 5
Var() = Deff Var(z,.) (= n)
Or; alternatively, since n, = ;. this :

be written in the form
p. 258);

ean,
L@

N -
Var(z)) -Def{-—N'!i-:fE

where 57 is the population variance.’
Now consider a simple random sample’
which is used to select a sample of n* elements
the same population of students. Let the variance of
the sample mean for this sample, Var*(x,,), be equal

to the variance of the sample mean for the
sample design, Var(f,). That is, Var(f,) = Var

sample. For example,

Substituting on both sides gives the following:

jo. 2 Sy ry | S:‘ i
N—='n; S_ N=-n 5 (10)

Dalt PR v 3 Sy 1

If N is large compared to n, or n*, then n* = n,/Deff
is the effective sample size for the complex sample

ltal;iim t to recognize that in complex samm
s pling patcisici 15 1 fonrtion of
whole sample design and not just the total sample
size. In order to make mennin%iul comparisons of
the sampling precision of complex sample designs,
the design eﬂ:'m must be compared in association
with the total sizes of the complex samples.

9. Simple Two-stage Cluster Sampling

In educational research, a complex sample design is
often employed rather than a simple random sample
design because of cost constraints. For example, a
two-stage sample consisting of the selection of 10
schools followed by the selection of clusters of 20
students within each of these schools would generally
lead to smaller data collection costs compared with

. asimple random sample c.f 200 students. The reduced

costs occur because the simple random sample may
require the researcher to collect data from as many
as 200 schools. However, the reduction in costs
ciated with the plex sample design must be
balanced against the potential for an increase in the
variance of sample estimates. The selection of groups
of students ar the first stage in a two-stage sample
design is referred to as cluster sampling. Cluster
sampling involves the division of the population into
clusters which serve as the initial units of selection.
The variance of the sample mean for the simple
two-stage cluster sample design depends. for a given
mber of clusters and a given ultimate cluster size.
on the value of the in s correlation coefficient.
This coefficient is a measure of the degree of homo-
.withiu'dpmn, In adus,ummnl research, stu-

¥ more B

) than would be the case if students were
ed at ra . The homogeneity of individuals

i ing units may be due to common selec-
tive factors, or to joinl exposure to the same
influence, or to mutual interaction, or (o some com-
bination of these. It is important 1o remember that
the coefficient of intraclass correlation may take dif-
&rp:gvglg‘es :r‘d different populations, different clus-

- variables.

: a . of elements divided into
equal clusters. Firstly, a simple random sample
cﬁnhedrmdmuﬁwg‘ population. Secondly,
aw e sample of the same size can be drawn
from the by using simple random sam-
pling to ters, and then for each of the

selected sﬁs‘lm By using simple random sampling to
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select 1 elements, so that the total sample size n is
P,

metrical table of measures consisting of two inter-
changed entries for each pair of measures. This

given by: n=m-A. The relationship the
variances of the sampling distributions of sample
means for these two designs is (Kish 1965 p. 162):

Var(x.) = Var(t,,) [1 + (& = 1) - roh] (1)

where Var(i,) is the variance of the sampling dis-
tribution of sample means for the simple two-stage
cluster design: Var(i,,) is the variance of the sam-
phing distribution of sample means for the simple
random sample design; 7 is the ultimate cluster size;
and revkr is the coefficient of intraclass correlation.

By transposing the above equation, the value of
the design effect for the simple two-stage cluster
sample design may be written as a function of the
ultimate cluster size and the coefficient of intraclass
correlation:

Deff = YU _ 4 (3 — 1)r0h (12)
Var(i,,)

Sunce roh is penerally positive (for students within
schools and students within classrooms) the precision
of the simple two-stage cluster sample design (which
uses either schools or classrooms as primary sampling
units) will generally result in sample means which
have: larger variance than for a simple random sample
design of the same size. The losses in sampling pre-
cision associated with the two-stage design must
therefore be weighed against the “gains” associated
with reduced costs due to the selection and measure-
ment of smaller s of primary sampling units.

Experience gained from large-scale evaluation
studies carried out in many countries (Peaker 1967,
[975) has shown that roh values of around 0.2 provide
reasonably accurate estimates of student homo-
geneity for achievement variables within schools.
Higher values of roh for achievement variables have
been noted in Australia when considering student
homogeneity within classrooms (Ross 1‘;&:‘3 . These
higher values for students within classroons are some-
times due to administrative arrangy in school
systems. For example, students could be allocated to
classrooms by using ability streaming within schools,
or there may be sub ial diffi b class-
roont learning environments within schools.

T Fstniation of the Coefficient of Intraclass
Correlationt

Fhe coetlivient of intruclass correlation was devel-
oped i connection with studies carried out to esti-
ntate degrees of fraternal resemblance, as in the
citlenlation of the correlation between the heights
of brothers. To estabiish this correlation there is
gencrilly no reason for ordering pairs of meas-
urenients obtained {rom any two brothers. The initial
approach to this problem was the calculation of a
product-moment correlation coefficient from a sym-
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method is suitable for small numbers of entries—
however the number of entries in the table rises
rapidly as the number of pairs increases.
Some cc ionally simpl hods for gal-
culating estimates of this coefficient have been
described by Haggard (1958). The most commonly
used method appears to have been based on usin,
one-way analysis of variance where the clusters whi
define the first-stage pling units, for T
schools or classrooms, are regarded as the “treat-
ments”. The between clusters mean square, BCMS,
and the within clusters mean square, WCMS, are then

combined with the ber of per cluster,
i, to obtain the estimate of roh:
BCMS — WCMS
estimated rok = 5 13)

BCMS + (A — 1) WCMS

An alternative formula, which is based upon vari-
ance estimates for elements and cluster means has
been presented by Ross (1983):

L
estimated roh = F-Da (14)

where s? is the variance of the cluster means; 5* is
the variance of the elements; and A is the ultimate
cluster size.

Both of these formulas assume that the data have
been collected by using simple two-stage cluster sam-
pling, and also that both the number of elements and
the number of clusters in the population are large.

11. Sample Design Tables for Simple Two-stage
Cluster Sample Designs '

The two-stage cluster sample design is probably the
most often used sample ign in educational
research. Generally this design 15 employed by se-
lecting either schools or classes at the first stage of
sampling, followed by the selection of either students
within schools or students within classes at the second
stage. In many research situations these sample

designs will be less expensive than simple random

sample designs of the same size. Also, they offer an
opportunity for the her to i I at
higher levels of data a?gresation. For exampfc. the
selection of clusters of students according to their
membership of classes would allow the researcher,
provided there were sufficient numbers of classes and
sufficient numbers of students per class in the sample,
to create a data file based on class mean scores and
then to conduct analyses at the “between-class” level

(see Linits of Analysis).
Th ious discussion showed that the p

e F
of the simple two-stage cluster design relative to a
simple random m:fu[e design of the same size was a
function of A, the ultimate cluster size, and roh, the
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coefficient of intraclass correlation. With a knowl-
edge of both of these statistics, in combination with
the required level of sampling precision, it is ﬁs&ible
to t:fghlish a planning equation which may

to guide decisions concerning the opriate num-
bers of first- and second-stage sampling units.

For I ider an educational research
study in which test items are administered to a san?le
of students with the aim of estimating the item dif-
ficulty vajues and mean test scores for the population.
If a simple rand ple of n* stud is selected
from the population in order to calculate the pro-
portion p who have obtained the correct answer on
an item, the variance of p as an estimate of the
population difficulty value may be estimated from
the following formula (Kish 1965 p. 46):

p( - p)

the same accuracy as a simple random sample of size
n* = 400 may be written as:

.

L 400 (17)

Since the complex sample is a simple two-stage
cluster sample design. the value of Deff may be
replaced by 1 + (A — 1)roh in the above expression
to obtain lie planning equation:

n, = 400[1 + (7 — Drok} = ma (18)
where roh is the coefficient of intraclass correlation
for the student measure which is being considered:
m is the number of primary selections; and # is the
number of secondary selections within each primary
selection.

It is important to that the pl
equation is derived with the assum{,utinn that the two-
stage sample design fits the model of a simple 1wo-
stage cluster sample d'enpl In practical educational

ies

var(p) = <o —- (15)
This fi la ign the finite pop correction
factor because it is assumed that the population is

large compared to the sample size.
If it is specified that the standard error ofzp,
i dasap ige, should not exceed 2.5
percent, then by assuming normality this would give
PEST as 95 fid limits for the
population value. The maximum value of pll-p)
occurs for p = 50. Therefore in order to ensure that

these error req could be satisfied for all
items, it is necessary to require that
100 -
@257 = 22%5;2?1291 (16)

That is, n* would have to be greater than or
(approximately) equal to 400 in order to obtain 95
percent co nce limits of p + 5 percent.

The variance of a sample mean obtained from a
sin% d iple which is gr lhanougm
to 400 in size would be less than or equal to s2/400.
Also, the standard error of the sample mean would
bekuthnwegunwsfm, ing normality,
this would give a 95 percent confidence of 10
I of a stud dard deviation score when
the sample mean is used as an estimate of the popu-
Iaﬁ;gwmenn. of

consider the size of a simple rwo-stage s: e

h stud igns may depart from this
model Zi:morpunﬂ—ng such complexitics as the use
of stratification prior to sample selection, and/or the
use of varyi.l;i probabilities of selection at each of the
WO stages pling. C quently the planning
equation must be seen as a tool which assists with
theLselection of a sample design. rather than a precise

ique for p g sampling errors. The actual
pling y of a sample design must be deter-
mined after the ple data b ilable for

analysis.
As an example, consider roh = 0.2 and & = 10.
Then,

mz;?{t + (A — 1)rohj

= %[l + (10 - 1)0.2}

=112 (")

That is, for rek = 0.2, a simple two-stage cluster
design of 1,120 studenys consisting of 112 primary
selections (ol by the selection of 10 students
per primary would be required to obtain
accuracy which isequivalent to a simple random
sample of 400 students.

In Table 1, the planning equation has been
gmpb}'zd to list sets of values for #, m, and n, which

ﬁurwywuimplg nd ents.
al

1ple of 400 stud
t is, it is bers of

h

ibe a group of simple two-stage cluster sample

3

Yy to the
primary sampling units (for example, schools or
classes) and the b of dary sampling units
gudenu) which would be required in order to obtain
rcemt confidence bands of + 5 percent for item

I that have equivalent sampling accuracy 1o a
simple rand mple of 400 stud Two sets of
sample designs have been listed in the table cor-
reﬁmdmg to roh values of 0.2 and 0.4,
The most strikingh:ntum of Table 1 is the rapidly
ks that i !

a :

ulty estimates, and =10 p of a stud

standard deviation score for test mean estimates.
From previous discussion, the relationship
between the size of a complex sample, n,, which has

g g A, the cluster size,
has on m, the number of clusters which must be
selected. This is particularly noticeable for both
values of roh when the cluster size reaches 10 to 15

ar
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Table 1 )
Sample design table for simple twn«t;g‘e cluster samples
haviag an cguivalent sample size of 4

roh = 0.2 roh = 0.4

Shudents per clusler e

i Deff n, m Deff n, m
1 {srs) 1.0 400 400 10 400 400
2 1.2 480 240 14 560 280
5 18 T 144 26 1,040 208
L IE L1200 112 46 1,840 184
15 iE L5200 102 6.6 2640 176
2 48 1920 9% A6 440 T2
30 68 2,720 91 12.6 5040 168
4w 88 3,520 -88 166 6,640 166
s g 4320 87 206 B240 165

4 Mate: The vaiues of o, the numirer of clusters selected, have been
rounded upwards 1o the nearest integer value

students. For example, when rof = 0.4, the selection
of 15 students per cluster from 176 clusters would
have equival pling racy to a design in
which 50 students per cluster were sele¢ted from 165
clusters. The total sample size in these two cases
differs by a factor of over three—from 2,640 10 8,240,
The selection of an appropriate cluster size for
an educational research study usually requires the
researcher to reconcile the demands of a set of often
ompeting requi A ber of authors (for
example, Hansen et al. 1953, Kish 1965, Sudman
1976) have presented descriptions of the use of cost

yses at the bet school level, data from stu-
dents are usually aggregated to obtain data files con-
sisting of school records based on studenmt mean
scores. If the number of students selected per school
is too small then esti of school ch istics
may be subject to large within-school sampling
errors.

12. prs Twa-sragé Cluster Sample Designs

The preceding discussion of the simple two-stage
cluster sample design was based on the assumption
that the primary sampling units were of equal size.
In educational research the most commonly used
primary sampling units, schools and classes, are
rarely equal in size. If the sizes of the primary sam-
pling units vary a great deal then problems often
arise in controlling the total sample size when the
researcher aims to select a two-stage epsem sample.
For example, consider a two-stage sample design
in which a schools are selected from a list of A
schools, and then a fixed fraction of students, say
1/k, is selected from each of the aschools. This design
would provide an epsem sample of students beeause
probability of selecting a student is a/dk which
is constant for all students in the population.
However, the actual size of thé sample would depend
directly upon the size of the schools which were
selected into the sample.
One method of obtaining
sample size would be to stratil

ter control over the
the schools aocurdinﬁ

1o size and then select samples of schools within eac

“unctions to calculate the op l or most

A more widely applied alternative is to

cluster size for certain fixed costs d with
various aspects of sampling and data collection.
‘These approaches provide useful guidelines but they
musi be considered in combination with the need for
nigh validity in the collection of data. For example,
achievement tests which are to be administered in
schools should preferably be given at one point of
lime in order to prevent the possibility of those
students who have completed the tést bemng able to
discuss the answers with students will be given
the test at some later time. nal researchers
generally cope with this problem by limiting the
cluster size to the number of students who can be
tested under standardized conditions in ome test

istration. In most ed n gysteis this would
represent clusteli,:ius of around ﬁm ;:Iudcnl!
when tests can be given by grox ation.
Much smaller cluster sizes ﬁnry for tests
which require individualized Administration unless a
large ber of test admini rs can be assigned

at the same time to a particular school.

A further constraint on'the choice of the cluster
size may vccur when analyses are planned for the
ietween-student level of analysis znd also at some
higher level of data aggregation—for example, at the
between-school level of analysis. In order to conduct
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ploy probability proportional to size (PPs) sam-
pling of the primary sampling, units followed by
simple random sampling of a fixed number . of
elements within these units. An exact exegytigh of
the PPs method J.mw]des complete control over the
sample size and yet .ensures epsem sampling, of
elements. 7

For example, consider a sample of m schools
selected with PPs from a population of M schaols
followéd by the selection an‘a)simple random sample
of /1 students from each of the m schools, Consider
student § who attends school j which has n; members
from the total ‘of N students in the defined target

po%uzl:m bility of sel

P B i, py. into this
sample may be expressed as:
S om A mA
,Pl'lf"ﬁ*_;j-—ﬁ- (20)

Since m, A, and N are constants then all studeqts
in the defined target population have the same
of selection. That is, this Pps sample design’ would
lead to epsem sampling, and at the same time fix the
total sample size as mA students.

An estimate of the variance of the sample mean,
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a ber of tickets which is oqual to the number of

. obtained from the PPS le design described
a ve may be obtained from the following formula
(Yamane 1967 p. 255):

1
VAT(y) = oy 2 () — )’ @

where ¥ = 1/ Z,x;, is the mean score for students in
the jth ultimate cluster, and Ay = UYmA T, Fx, = 1/
mZ, is the mean score for students in the total
sam’ fﬂ

This formula emphaiszes two important points
which ged from the di of the simple
two-stage cluster sample design. First, the variance
of the sample mean may be reduced (for a given

dents in the defined 1
For example, consider the hypotheucal population

described in Table 2. Only the first seven and final

three schooln have be:n listed. However the tot;n:

haol studente d to

26 and 4 000 respectively. Each school is allocated

a number of tickets equal to the number of students

in the defined target population in the school.

If five schools are to be d then five wi
tickets are required. The ratio of number of tickets
to the number of tickets is 4,000/5 = 800.
That is, each ticket have a 1 in 800 chance of
being drawn as a winning ticket

d

population of cl ) by i g the
of primary selections. Second, the variance of the
sample mean may be reduced (fol a‘hpven numher

ng tickets are sel by usmg a
tart dure. A

nt interval
in lhe interval 1 to 800 is selected from a table of
bers and a list of five winning ticket

of pnmary selections) by all
clusters in a fashion which reduces the vann!mn
between cluster means,
When accurate information concerning the size of
each anary 1g unit is not available, then PPs
is often conducted by u “measures of
me mher than true sizes. 'I'hal :.s, at the first stage
the cl are d with probability

numbers is created by adding increments of 800. For
example with a random start of 520 the winning ticket
numbers would be 520, 1320, 2120, 2920, and 3720.
The schools which are selected into the sample have
been marked in Table 2. School D corresponds to
wmnlns ticke? aumber 520, and so on to school X

ber 3,720.
The chance of u]u:lmg a u:ular school is pro-

g:npornunal. to their measure of size. The difference
tween the actual size of a cluster and its

of size is compensated for at the second state of
sampling in order to achieve an epsem sample design
Kish (1965 pp. 222-23) has presented formulas which
demonstrate  how to_calc culate the appropriate
second-stage sampli ions for these situati

12.1 The Lonery Method of Pps Selection

An often-used technique for " selecting a PPS sample
of, say, schools from a frame is to

a lottery method of samplmg Each school is allocated

Table 2

mtn the tickets associated with
that Comecpmuly each of the five schools is

L ility prop to the E
of in the defined tar arget popul

13. The Problem of Nonresponse

In most educational research studies there is usually
some loss of data due, for example, to the non-
participation of schools, or the nonr of sam-
ple members within selected schools. The resulting

Hypothetical population of schools and students

Number of students  Cumularive tally

School in target population of students Ticket numbers
A 50 50 1-50

B 200 250 §1-250
C S 300 251-300
D* 00 600 301-600
E 150 750 601-750
F 450 1,200 751-1,200
G 250 1,450 1,201-1.450
X 100 3,750 3,651-3.750
Y 50 3,800 3,751-3,800
z 200 4,000 3,801-4,000

& Schools selected into final sample
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nussing data give rise to differences between the
designed sample and the achiéved sample.

Oine of the most frequently asked questions in
educational research is: *How much missing data can
he accepted before there is a danger of bias in the
saumple estimates?” The only realistic answer is that
there is no general rule which defines a safe limit for
nonresponse, The nonresponse bias may be large
wven if there are small amounts of missing data, and
ViU VOTSH —

There are two broad categories of nonresponse:
1otal nonresponse and item nonresponse. Total non-
response refers to a complete loss of data for par-
ticular sample members, and is often dealt with by
emploving weights in order 1o adjust for differential
loss of data among certain important subgroups of
the sample (see Data Analysis: Nonresponse). Item
nonresponse refers to the loss of a few items of
information for particular sample members, and is
usually dealt with by the assignment of values which
replace the missing data.

It is important 1o remember that the level of bias
i sample estimates which may occur through non-
1esponse generally cannot be overcome by increasing
the sample size. The common approach of using
rundom repl of ponders usually pro-
vides additional sample members who resemble
rusponders rather than nonresponders. The level of
bias which actually occurs in these situations depends
upon the variables which are being examined and
their relationships with the nature of the non-

di b p of the defined target popu-

& ]

lation.

extended form of this approach occh;:;'s when the
nonréspondent is assigned a value which is equal to
the mean or the mcdi%l:l for' a group of respondents
having similar characteristjcs.

The hot ueck assig it procedure, p
the United States Bureau of the Census, also employs
a form of matching. Initially the data available from
the sample members afe partitioned into homo-
geneous subgroups b on a set of key variables.
A cold deck of inF:rmation derived from past survey
data is then stored in the computer. If the first record
to be processed has complete information then it
replaces the cold deck; if information is missing from
this record then the cold deck data is assigned. The
process continues with the hot deck being continually
updated to reflect the most recently processed sample
cases. All sample records, after the first record with
computer information, for which information is miss-
ing are consequently assigned the values recorded
for the last record processed in the subgroup. It is
thus possible for the same record to be used to assign
values to many different records in which data are
missing.

Assignment may also be carried out by using

g n esti of missing data. This approach
capitalizes on the correlational associations gelwm
items for the responders. For example, a group of
student home background variables may be used to
prepare a regression equation with family income as
the dependent variable. The sample members who
do not respond to the family income question are
then d a predicted value obtained from a
regression equation estimate based on the home

The problem of nonresp in ed
research appears to have received limited research
attention. This is unfortunate because even doing

d information which they have provided.
See also: Sampling Errors; Interviews in Sample Surveys;

nothing about nonresponse is an i ad

DB!.Ipn: Survey '?.esearth Methods; Stat-

scheme in itself which is based upon the assump
tion that loss of data is equivalent to random loss of
data,

In studies where only a few items of infi ion

istical Analysis in Ed R ch Meth-
ol Bebavicral
EY

are missing for a small ber of sample ibers,
the procedure of value assignment is often used. This
approach requires that the researcher, working from
mformation which is available from the achieved
sample, provides the values which replace the missing
data. Lansing and Morgan (1971) recommend that
the use of assignment procedures should be restricted
cither to situations where there are very few missing
virlues associated with an important explanatory vari-
able, or to situations where a limited amount of
mesing data appears for a variable that forms one
vomponent uf i variable made up of many compo-
nents
ihe simplest form of i \
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Sampling Errors

For a simple random sample of n elements drawn
without acement from a large population, the
variance of the sample mean may be estimated from
a single sample by using the following formula (Kish
1965 p. 41):

var(f) = ':!—2 (2)

where var(f) refers 1o the sample estimate of the
variance of #, and s* is the unbiased estimate of
the variance of the element values. A factor called
the finite population correction has been left our of
the formula because the population is assumed to
be large.

In many practical survey research situations the
sampling i.s:ribulinn of the sample mean, and many

The difference between a particular sample
and the population parameter obtained from a com-
plete analysis of all s of the defined target
population is called the sampling error for that
sample. In most practical situations the value of the

other is app! normally
distributed. The approximation improves with sam-
ple size even lhwme population of element values
is far from normal (Kish 1965). Consequently, by
taking the square root of the estimated variance it is
ible to obtain an estimate of the standard error

population parameter is unk and therefore it is

not possible to calculate the sampling error for a

particular sample. Instead, through a knowledge of
£ csti o

of the sampling distribution of these sample esti-
mators and thereby calcul Jence limits for

the behaviour of d from all possibl
samples. it is sometimes possible 1o estimate the
average. or expected, sampling error even though
the value of the population parameter is unknown.

The notion of an average, or expected, sampling
error is usually summarized in terms of the mean
square error. The mean square error, MSE, is the
expected value of the squared difference between a
sample value. for example the sample mean #, and
the population parameter, u, taken over all ible
samples. Denoting the expected value of the sam-
pling distribution of sample means by E (i), the mean
sjuare error may be written as:

MSE(E) = E(§ - p)*
= Efi ~ E@) + [E(®) - uf n
= Wariance of ¥ + (Bias of £)°

In most well-designed samples the bias of a sample
estimate is either zero or small. tending towards zero
with increasing sample size. Therefore, the average
sampling error is usually described in terms of the
vanange

I Estimation of Sampling Errors
11 Simple Random Samples
The educational researcher is usually dealing with a

the cor ding ;sarnmeter.
In the case of the sample mean, the estimate of
the standard error would be:

SE(2) = Vivar(z) = 5: @)

Although there is general agreemeni among sta-
tistical authors concerning the formula for estimating
the standard error of the sample mean for a simple
random sample of eh there are someti
differences of opinion about the opriate for-
mulas for calc'ulatigg the variance of more complex

tisticg. These di 8 lly become insig-
nificant or the typically large population and sample
sizes which are associated with educational survey
research. In Table 1 the formulas for calculating the
standard error of several commonly used statistics
have been listed. The formulas were selected from
one source (Guilford and Fruchter 1978).

The formulas in Table 1 are based on a simple
random sample of n elements which are measured
on m variables. The symbol s refers to the standard
deviation and the symbol R, i refers to the multiple
correlation coefficient associated with a regression
equation which uses variable i as the criterion and
variables j. k. and ! as predictors (see Regression
Analysis;, Correlational Procedures).

single random sample of data rather than all p
simples from a population. The variance of a sample
cotimate therefore cannot be calculated exactly.
Instead, by using formulas derived by statisticians,
estimates are made of the variance from the internal
evidence of a single sample of data. -

e 1.2 Complex Sampls
Educational hisg Ty cond ’hyusinﬁ
data ob d from lex sample designs whicl

e:'nJ;loy techniques such as stratification, cw#ustlering.
and varying probabilities of selection, Computational
formulas are available to provide estimates of the
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Sampling Errors

Table !
Formulas for estimation of sampling error when data are
gathered by using a simple random sample design

have been gathered by using simple random sample
pti While overesti of sampling errors
may lead to errors of a conservative kind, under-

Sampee statistic

Estimate of standard error

Mean o
Vi
Correlation coefficient 1
wn
Stancardized Tegression I~ 1 -FRI8a m
cocificient \rru “REH . miin —m)

Muluple correlation 1

coefficient Vi m

have the p ial to misrep the sta-
bility of sample statistics in a fashion which might
lead to erroneous conclusions concerning the impor-
tance of research findings.
The research evidence which is available con-
cerning the magnitude of ling errors for statisti
ients, regression

such as means, correlation coel
coefficients, and muit}p]e correlation coefficients sug-
gests that the use of formulas based on the assump-
tion of simple random sampling often results in gross
underestimation of sampling errors for many sampte
designs which are commonly used in educational
research (Peaker 1975, Ross 1978). The degae of
underestimation may be summarized by the “design
ej&"or “Deff" value. In Table 2 some values of
Deff have been presented for a two-stage sample
design employed in seven countries during a cross-
ional h study carried out by ntie Inter-

standard errors of descriptive statistics such as sample
means for a wide range of these sample designs.
Unfortunately, the cf ional formulas required
for estimating the standard errors for analytical sta-
tistics such as correlation coefficients, standardized
regression coeffictents, and multiple correlation coef-
ficients are not readily available for sample designs
which depart from the model of simple random sam-
pling. ‘These formulas are either enormously com-
plicated or. ultimately, they prove to be resistant to
mathematical analysis (Frankel 1971).

Due to the lack of suitable sampling error formulas
for analytical statistics estimated from complex sam-
ple designs, researchers have tended to accept esti-
mates based on formulas which assume that data

Tabie 2

national Association for the Evaluation of Edu-
cational Achievement (1EA) (Peaker 1975). For each
country the ber of schools selected at the first
stage, m, and the number of students selected within
the sample schools, &, has been p d.

The value of \/Deff represents the factor by which
sampling errors, obtained from formulas based on
sim| d pling ptions, must be multi-
plied in order to obtain estimates of the actual value
of the sampling error for the complex sample design.
For example, from the data presented in Table 2,
the standard error of a correlation coefficient for
Australia based on the complex two-stage sample of
n. = mi elements would be:

sE(r,) = V' Deff se(r,,) = % 4)

Mean values of V' Deff Deff obtained for seven countries participating in the 1EA science

praoject at the 14-year-old level

Value of VDeff
Schools Cluster size —
Country m A Means Correin. coeff Regn, coeff.
Australia 225 24 4 17 13
Chile 103 13 2.6 1.6 1.6
Finland h 30 23 1.7 1.3
Hungary 20 3 11 19 15
New Zealand 74 27 g i4 14
Scotland 0 i) 24 L5 1.2
Sweden 95 26 LB 1.2 13
Mean V' Deff — — 23 1.6 1.4
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