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A discipline that is in full development, propelled by the rise
of autonomous mobile robotics - notably drones -
automation has the objective of designing controls capable
of working within an existing dynamic system (automobile,
airplane, economic system, etc.). The resulting controlled
system is thus constructed by looping a physical system
activated and equipped with sensors using smart
electronics. While the initial system only obeyed the laws of
physics, the evolution of the looped system also obeyed an
IT program embedded in the control electronics.

In order to enable a better understanding of the key
concepts of automation, this book develops the
fundamental aspects of the field while also proposing
numerous concrete exercises and their solutions. The
theoretical approach that it presents fundamentally uses the
state space and makes it possible to process general and
complex systems in a simple way, involving several
switches and sensors of different types. This approach
requires the use of developed theoretical tools such as
linear algebra, analysis and physics, generally taught in
preparatory classes for specialist engineering courses.

Luc Jaulin is Professor in robotics at ENSTA-Bretagne in
France. He conducts research at the Lab-STICC in the field
of submarine robotics and sailing robots using set methods.
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Introduction

I.1. State representation

Biological, economic and other mechanical systems
surrounding us can often be described by a differential
equation such as:

under the hypothesis that the time ¢ in which the system
evolves is continuous [JAU 05]. The vector u(t) is the input
(or control) of the system. Its value may be chosen arbitrarily
for all ¢. The vector y(t) is the output of the system and can be
measured with a certain degree of accuracy. The vector x(t) is
called the state of the system. It represents the memory of the
system, in other words the information needed by the system
in order to predict its own future, for a known input u(¢). The
first of the two equations is called the evolution equation. It is
a differential equation that enables us to know where the
state x(t¢) is headed knowing its value at the present moment
t and the control u(t) that we are currently exerting. The
second equation is called the observation equation. It allows
us to calculate the output vector y(¢), knowing the state and
control at time t. Note, however, that, unlike the evolution
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equation, this equation is not a differential equation as it
does not involve the derivatives of the signals. The two
equations given above form the state representation of the
system.

It is sometimes useful to consider a discrete time k, with
k € 7, where Z is the set of integers. If, for instance, the
universe is being considered as a computer, it is possible to
consider that the time k is discrete and synchronized to the
clock of the microprocessor. Discrete-time systems often
respect a recurrence equation such as:

{x(kv +1) = f(x(k), u(k))

The first objective of this book is to understand the concept
of state representation through numerous exercises. For this,
we will consider, in Chapter 1, a large number of varied
exercises and show how to reach a state representation. We
will then show, in Chapter 2, how to simulate a given system
on a computer using its state representation.

The second objective of this book is to propose methods to
control the systems described by state equations. In other
words, we will attempt to build automatic machines (in which
humans are practically not involved, except to give orders, or
setpoints), called controllers capable of domesticating
(changing the behavior in a desired direction) the systems
being considered. For this, the controller will have to compute
the inputs u(t) to be applied to the system from the (more or
less noisy) knowledge of the outputs y(tf) and from the
setpoints w(t) (see Figure 1.1).

From the point of view of the user, the system, referred to
as a closed-loop system, with input w(t) and output y(¢), will
have a suitable behavior. We will say that we have controlled
the system. With this objective of control, we will, in a first
phase, only look at linear systems, in other words when the
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functions f and g are assumed linear. Thus, in the continuous-
time case, the state equations of the system are written as:

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

and in the discrete-time case, they become:

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k)

w(t)

t t
regulator u(®) system y( )>

Figure 1.1. Closed loop concept illustrating the control of a system

The matrices A,B,C,D are called evolution, control,
observation and direct matrices. A detailed analysis of these
systems will be performed in Chapter 3. We will then explain,
in Chapter 4, how to stabilize these systems. Finally, we will
show in Chapter 5 that around certain points, called
operating points, nonlinear systems behave like linear
systems. It will then be possible to stabilize them using the
same methods as those developed for the linear case.

Finally, this book is accompanied by numerous MATLAB
programs available at:

http//www.ensta-bretagne.fr/jaulin/isteauto.html
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1.2. Exercises
EXERCISE I.1.— Underwater robot

The underwater robot Saucisse of the Superior National
School of Advanced Techniques (SNSAT) Bretagne [JAU 09],
whose photo is given in Figure 1.2, is a control system. It
includes a computer, three propellers, a camera, a compass
and a sonar. What does the input vector u, the output vector
y, the state vector x and the setpoint w correspond to in this
context? Where does the computer come in the control loop?

Figure 1.2. Controlled underwater robot

EXERCISE 1.2.— Sailing robot

The sailing robot Vaimos (French Research Institute for
Exploitation of the Sea (FRIES) and SNSAT Bretagne) in
Figure 1.3 is also a control system [JAU 12a, JAU 12b]. It is
capable of following paths by itself, such as the one drawn in
Figure 1.3. It has a rudder and a sail adjustable using a
sheet. It also has an anemometer on top of the mast, a
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compass and a Global Positioning System (GPS). Describe
what the input vector u, the output vector y, the state vector
x and the setpoint w may correspond to.

b)

Figure 1.3. Sailing robot Vaimos a) and a path followed by Vaimos
b). The zig-zags in the path are due to Vaimos having to tack in order
to sail against the wind

I1.3. Solutions
Solution to Exercise 1.1 (underwater robot)

The input vector u € R? corresponds to the electric voltage
given to the three propellers and the output vector y(t)
includes the compass, the sonar data and the images taken
by the cameras. The state vector x corresponds to the
position, orientation and speeds of the robot. The setpoint w
is requested by the supervisor. For instance, if we want to
perform a course control, the setpoint w will be the desired
speed and course for the robot. The controller is a pogram
executed by the computer.
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Solution to Exercise 1.2 (sailing robot)

The input vector u € R? corresponds to the length of the sail
sheet §,'** and to the angle of the rudder ¢,. The output vector
y € R* includes the GPS data m, the ultrasound anemometer
(weather vane on top of the mast) i) and the compass 6. The
setpoint w indicates here the segment ab to follow. Figure 1.4
illustrates this control loop. A supervisor, not represented on
the figure, takes care of sequencing the segments to follow in
such a way that the robot follows the desired path (here 12
segments forming a square box followed by a return to port).

0,
a
—b_> regulator v,
2y

x;

Figure 1.4. Control loop of the sailing robot
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Modeling

We will call modeling the step that consists of finding a
more or less accurate state representation of the system we
are looking at. In general, constant parameters appear in the
state equations (such as the mass or the inertial moment of a
body, the coefficient of viscous friction, the capacitance of a
capacitor, etc.). In these cases, an identification step may
prove to be necessary. In this book, we will assume that all
the parameters are known, otherwise we invite the reader to
consult Eric Walter’s book [WAL 14] for a broad range of
identification methods. Of course, no systematic methodology
exists that can be used to model a system. The goal of this
chapter and of the following exercises is to present, using
several varied examples, how to obtain a state
representation.

1.1. Linear systems

In the continuous-time case, linear systems can be
described by the following state equations:

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)
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Linear systems are rather rare in nature. However, they
are relatively easy to manipulate using linear algebra
techniques and often approximate in an acceptable manner
the nonlinear systems around their operating point.

1.2. Mechanical systems

The fundamental principle of dynamics allows us to easily
find the state equations of mechanical systems (such as
robots). The resulting calculations are relatively complicated
for complex systems and the use of computer algebra systems
may prove to be useful. In order to obtain the state equations
of a mechanical system composed of several subsystems
81,89, ..., S, assumed to be rigid, we follow three steps:

1) Obtaining the differential equations. For each subsystem
Sy, with mass m and inertial matrix J, the following relations
must be applied:

2.5 =ma
Yo Mg, =Jw

where the f; are the forces acting on the subsystem Sj,, Mg,
represents the torque created by the force f; on Si, with
respect to its center. The vector a represents the tangential
acceleration of S; and the vector @ represents the angular
acceleration of S;. After decomposing these 2m vectorial
equations according to their components, we obtain 6m scalar
differential equations such that some of them might be
degenerate.

2) Removing the components of the internal forces. In
differential equations there are the so-called bonding forces,
which are internal to the whole mechanical system, even
though they are external to each subsystem composing it.
They represent the action of a subsystem S, on another
subsystem S;. Following the action-reaction principle, the



