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Foreword

Over the years, machine learning has grown to be a major computer science discipline
with wide applications in science and engineering. Despite its phenomenal success, a
fundamental challenge to machine learning is the lack of sufficient training data to build
accurate and reliable models in many practical situations. We may make the best choice
of learning algorithms, but when quality data are in short supply, the resulting models
can perform very poorly on a new domain.

The lack of training data problem can be taken as an opportunity to developing new
theories of machine learning for developing models of complex phenonmena. As hu-
mans, we observe that we often have the ability to adapt what we have learned in one
area to a new area, provided that these areas are somewhat related. We often learn in
a continual fashion by standing on the shoulders of earlier models, rather than learning
new models from scratch each time. We also come to recognize features that are com-
monly used across a set of related models. And finally, in concept learning, we often
learn via not millions of examples, but through only a selected few. These phenomena
call for new insights into unsupervised and transfer learning.

In the past, researchers in different subfields of machine learning have been making
advances in their separate ways in the areas listed above. Recently, many of these ad-
vances have started to overlap and suggest synergistic opportunities for impact on the
field. Holding a joint workshop in 2011 to bring together researchers in unsupervised
and transfer learning researchers was timely. Exploring the intersection of these two
fields holds strong promises for us to gain new insights, especially in their respective
abilities to discover ‘deep’ features for domain representation. It is also an innova-
tive idea to hold an international machine-learning contest together with the workshop,
which inspires many new approaches to the difficult problem.

This volume represents a significant effort of the editors and workshop organizers,
who not only put in much time in organizing the proceedings and papers, but also the
challenge itself. The authors have made excellent effort in bringing us a high-quality
collection with a wide coverage of topics. This collection starts with a survey paper by
the editors on the state of the art of the field of unsupervised and transfer learning. It
then presents papers related to theoretical advances in deep learning, model selection
and clustering. The next part consists of articles by the Challenge winners on their
approaches in solving the unsupervised and transfer learning contest problems. Finally,
the last part consists of articles that cover various applications and specific approaches
to unsupervised and transfer learning. All these articles give a complete picture of
researchers’ efforts for this important and challenging problem.

Looking forward, we can see several strands of emerging themes in unsupervised
and transfer learning. As we march into the era of Big Data, questions on how to
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separate quality patterns from noise will become more pressing. The recent Google
experiments on deep learning have given have show that it is possible to train a very
large unsupervised neural network (16,000 computer processors with one billion con-
nections) to automatically develop features for recognizing cat faces. The data sparsity
problem associated with extremely large-scale recommendation systems provides us
with strong motivation for finding new ways to transfer knowledge from auxiliary data
sources. New questions about the scalability, reliability and adaptability of the unsu-
pervised and transfer learning models will take central stage in much of ML research
in the coming decade. Indeed, for unsupervised and transfer learning research, we live
in very interesting times!

Qiang Yang, Huawei Noah’s Ark Research Lab and Hong Kong University of Science
and Technology



Preface

Machine learning is a subarea of artificial intelligence that is concerned with systems
that improve with experience. It is the science of building hardware or software that
can achieve tasks by learning from examples. While much of the efforts in this field
over the past twenty years have been devoted to “supervised learning”, that is learning
under the supervision of a “teacher” providing guidance in the form of labeled data
(input output pairs), recent advances in unsupervised and transfer learning have seen
a complete paradigm shift in machine learning. Unsupervised learning considers the
problem of discovering regularities, features or structure in unlabeled data. Transfer
learning considers the use of prior knowledge, such as learned features, from one or
more source tasks when developing a hypothesis for a new target task. While human
beings are adept at transfer learning using mixtures of labeled and unlabeled examples,
even across widely disparate domains, we have only begun to develop machine learning
systems that exhibit the combined use of unsupervised learning and knowledge transfer.

This book is a result of an international challenge on Unsupervised and Transfer
Learning (UTL) that culminated in a workshop of the same name at the ICML-2011
conference in Bellevue, Washington, on July 2, 2011; it captures the best of the chal-
lenge findings and the most recent research presented at the workshop.

The book is targeted for machine learning researchers and data mining practitioners
interested in “lifelong machine learning systems” that retain the knowledge from prior
learning to create more accurate models for new learning problems. Such systems will
be of fundamental importance to intelligent software agents and robotics in the 21st
century. The articles include new theories and new theoretically grounded algorithms
applied to practical problems. It addressed an audience of experienced researchers in
the field as well as Masters and Doctoral students undertaking research in machine
learning.

The book is organized in three major sections that can be read independently of
each other. The introductory chapter is a survey on the state of the art of the field of
unsupervised and transfer learning providing an overview of the book articles. The first
section includes papers related to theoretical advances in deep learning, model selection
and clustering. The second section presents articles by the challenge winners. The final
section consists of the best articles from the ICML-2011 workshop; covering various
approaches to and applications of unsupervised and transfer learning.

This project was sponsored in part by the DARPA Deep Learning program and is
an activity of the Causality Workbench supported by the Pascal network of excellence
funded by the European Commission and by the U.S. National Science Foundation
under Grant NO. ECCS-0725746. The UTL Challenge was organized by Chalearn
(http://www.chalearn.org/); a society that works to stimulate research in the
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field of machine learning through international challenges. Any opinions, findings, and
conclusions or recommendations expressed in this book are those of the authors and do
not necessarily reflect the views of the sponsors.

This volume reprints papers from JMLR W&CP volume 27.
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Abstract

We organized a data mining challenge in “unsupervised and transfer learning” (the
UTL challenge) followed by a workshop of the same name at the ICML 2011 con-
ference in Bellevue, Washington!. This introduction presents the highlights of the
outstanding contributions that were made, which are regrouped in this issue of JMLR
W&CP. Novel methodologies emerged to capitalize on large volumes of unlabeled
data from tasks related (but different) from a target task, including a method to learn
data kernels (similarity measures) and new deep architectures for feature learning.

Keywords: transfer learning, unsupervised learning, metric learning, kernel learning,
unlabeled data, challenges

1. Introduction

Unsupervised learning considers the problem of discovering regularities or structure in
unlabeled data (e.g., finding sub-manifolds or clustering examples) based on a repre-
sentation of the domain. Transfer learning considers the use of prior knowledge (such
as labeled training examples, or shared features) from one or more source tasks when
developing a hypothesis for a new target task. While human beings are adept at transfer
learning using mixtures of labeled and unlabeled examples, even across widely dis-
parate domains, we have only begun to develop machine learning systems that exhibit
the combined use of unsupervised learning and knowledge transfer.

To foster greater research in this area we organized a international challenge on Un-
supervised and Transfer Learning that culminated in a workshop of the same name at
the ICML-2011 conference in Bellevue, Washington, on July 2, 2011. This workshop

l. http://clopinet.com/isabelle/Projects/ICML2011/.

© 2012 D.L. Silver, I. Guyon, G. Taylor, G. Dror & V. Lemaire.
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addressed a question of fundamental and practical interest in machine learning: the de-
velopment and assessment of methods that can generate data representations (features)
that can be reused across domains of tasks.

This edition of JMLR W&CP presents the challenge results and a collection of
outstanding contributed articles on the subject of transfer learning and unsupervised
learning. This paper and the edition focuses on unsupervised and transfer learning
for classification problems based on real-valued feature representations that are related
more closely to data mining tasks. Methods of transfer learning have also been investi-
gated for reinforcement learning (Ramon et al., 2007; Taylor and Stone, 2007), however
these are outside the scope of this edition.

2. Overview of Transfer Learning and Unsupervised Learning

2.1. Transfer Learning

Transfer learning refers to use of knowledge for one or more source tasks to develop
efficiently a more accurate hypothesis for a new target task. Transfer learning has most
frequently been applied to sets of labeled data that have a supervised target value for
each example. For instance, there would be significant benefit in using an accurate diag-
nostic model of one disease to develop a diagnostic model for a second related disease
for which you have few training examples. While all learning involves generalization
across problem instances, transfer learning emphasizes the transfer of knowledge across
domains, tasks, and distributions that are similar but not the same. Inductive transfer
has gone by a variety of names: bias learning, learning to learn, machine life-long learn-
ing, knowledge transfer, transfer learning, meta-learning, and incremental, camulative,
and continual learning.

Research in inductive transfer began in the early 1980s with discussions on induc-
tive bias, generalization and the necessity of heuristics for developing accurate hypothe-
ses from small numbers of training examples (Mitchell, 1980; Utgoff, 1986). This early
research suggested that the accumulation of prior knowledge for the purposes of select-
ing inductive bias is a useful characteristic for any learning system. Following the first
major workshop on inductive transfer (NIPS1995 Workshop, 1995) a series of articles
were published in special issues of Connection Science (Lorien Pratt (Editor), 1996)
and Machine Learning (Pratt and Sebastian Thrun (Editors), 1997), and a book entitled
“Learning to Learn” (Thrun and Lorien Y. Pratt (Editors), 1997) .

Since that time, research on inductive transfer has occurred using traditional ma-
chine learning methods (Caruana, 1997; Baxter, 1997; Silver and Mercer, 1996; Hes-
kes, 2000; Thrun and Lorien Y. Pratt (Editors), 1997; Bakker and Heskes, 2003; Ben-
David and Schuller, 2003), statistical regression methods (Greene, 2002; Zellner, 1962;
Breiman and Friedman, 1998), Bayesian methods involving constraints such as hyper
priors (Allenby and Rossi, 1999; Arora et al., 1998; Bakker and Heskes, 2003), and
more recently kernel methods such as support vector machines (SVMs) (Jebara, 2004,
Allenby and Rossi, 2005). All of these approaches rely upon the development of a
hypothesis for a target task under a constraint or regularization that characterizes a sim-
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ilarity or relatedness to one or more source tasks. In 2005, a second major workshop on
inductive transfer occurred at NIPS. Papers from this workshop can be found in (Silver
and Bennett, 2008) as well as at (NIPS2005 Workshop, 2005).

More recently, there has been work on inductive transfer in the areas of self-taught
learning (Raina et al., 2007b), transductive learning (Arnold et al., 2007), context-
sensitive multiple task learning (Silver et al., 2008), the learning of model structure
(Niculescu-Mizil and Caruana, 2007), unsupervised transfer learning [Yu,Wang], and
a variety of methods that mix unsupervised and supervised learning to be discussed in
greater detail below.

2.2. Unsupervised Learning

Unsupervised learning refers to the process of finding structure in unlabeled data re-
sulting in new data representations (including feature representations) and/or clustering
data into categories of similar examples, based on such representations (Hinton and
Sejnowski, 1999). The unlabeled data distinguishes unsupervised learning from super-
vised learning and reinforcement learning. Important recent progress has been made in
purely unsupervised learning (Smola et al., 2001; Bengio et al., 2003; Globerson and
Tishby, 2003; Ghahramani, 2004; Luxburg, 2007). However, these advances tend to
be ignored by practitioners who continue using a handful of popular algorithms like
PCA and ICA (for feature extraction and dimensionality reduction), and K-means, and
various hierarchical clustering methods for clustering (Jain et al., 1999).

2.3. Combining Unsupervised and Transfer Learning

It is often easier to obtain large quantities of unlabeled data from databases and sources
on the web, for example images of unlabeled objects. For this reason the idea of using
unsupervised learning in combination with supervised learning has attracted interest for
some time. Semi-supervised learning is a machine learning approach that is halfway
between supervised and unsupervised learning. In addition to the labeled data for a
given task of interest, the algorithm is provided with unlabeled data for the same task
- typically a small amount of labeled data and a large amount of unlabeled data (Blum
and Mitchell, 1998). Note that these approaches usually assume that the categories of
the unlabeled data, even though unknown to the learning machine, are the same as the
categories of the labeled data, i.e., that the “tasks” are the same.

In contrast, in the transfer learning setting, the unlabeled data does not need to come
from the same task. There has been considerable progress in the past decade in devel-
oping cross-task transfer using both discriminative and generative approaches in a wide
variety of settings (Pan and Yang, 2010). These approaches include multi-layer struc-
tured learning machines from the “Deep Learning” family such as convolutional neural
networks, Deep Belief Networks, and Deep Boltzmann Machines (Bengio, 2009; Gut-
stein, 2010; Erhan et al., 2010), sparse coding (Lee et al., 2007; Raina et al., 2007a),
and metric or kernel learning methods (Bromley et al., 1994; WU et al., 2009; Kulis,
2010). The “Learning to learn” and “Lifelong Learning” veins of research have con-
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tinued to provide interesting results in both machine learning and cognitive science in
terms of short-term learning with transfer and long-term retention of learned knowledge
(Silver et al., 2008). These references include recent evidence of the value of combin-
ing unsupervised generative learning with transfer learning to generate a rich set of
representation (features) upon which to build related supervised discriminative tasks.
The goal of the challenge we organized was to perform an evaluation of unsupervised
and transfer learning algorithms free of inventor bias to help to identify and popularize
algorithms that have advanced the state of the art.

3. Overview of the UTL Challenge

Part of the ICML workshop was devoted to the presentation of the results of the Unsu-
pervised and Transfer Learning challenge (UTL challenge Guyon et al., 2011a,b). The
challenge, which started in December 2010 and ended in April 2011, was organized in 2
phases. The aim of Phase 1 was to benchmark unsupervised learning algorithms used
as preprocessors for supervised learning, in the context of transfer learning problems.
The aim of phase 2 was to encourage researchers to exploit the possibilities offered by
new cutting-edge cross-task transfer learning algorithms, which transfer supervised
learning knowledge from task to task.

To that end, the competitors were presented with five datasets illustrating classifica-
tion problems from different domains: handwriting recognition, video processing, text
processing, object recognition, and ecology. Each dataset was split into 3 subsets: de-
velopment, validation, and final evaluation sets. In phase 1, all subsets were provided
without labels to the participants. The labels remained known only to the organizers
throughout the challenge. The goal of the participants was to produce the best possible
data representation for the final evaluation data. This representation was then evaluated
by the organizers on supervised learning classification tasks by training and testing a
linear classifier on subsets of the final evaluation data, such than a learning curve would
be produced. The evaluation metric was the area under the learning curve, which is a
means of aggregating performance results over a range of number of training examples
considered.

To avoid the possibility of participants selecting their model based on final evalu-
ation set performance, the final results remained secret until the end of the challenge.
Rather, feed-back was provided on-line during the challenge on the performance ob-
tained on validation data, and the final evaluation set data was used only for the final
ranking. For both phases, the participants could either submit a data representation
(for validation data and final evaluation data) or a matrix of similarity between exam-
ples (a kernel). Hence, the competition was equivalently a data representation learning
challenge and a kernel learning challenge.

In contrast with a classical evaluation of unsupervised learning as a preprocessing,
the three subsets (development, validation, and final evaluation sets) were not drawn
from the same distribution. In fact, they all had different sets of class labels. Pic-
ture for instance a problem of optical character recognition (OCR), the development set
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could contain only lowercase alphabetical letters, the validation set could contain up-
percase letters, and the final evaluation set, digits and symbols. This setting is typical of
real world problems in which there is an abundance of data available for training from
a source domain, which is distinct from the target domain of interest. For instance,
in face recognition, there is an abundance of pictures from unknown strangers that are
available on the Internet, compared to the few images of your close family members
that you care to classify. The development set represents a source domain whereas
the validation and final evaluation sets represent alternative target domains on which
different sets of tasks can be defined?.

In the second phase of the challenge, a few labels of the development set were
provided, offering to the participants the possibility of using supervised learning in
some way to produce better data representations for the validation and final evaluation
sets. The setting remained otherwise unchanged.

One of the main findings of this challenge is the power of unsupervised learning
as a preprocessing tool. For all the datasets of the challenge, unsupervised learning
produced results significantly better than the baseline methods (raw data or simple
normalizations). The participants exploited effectively the feed-back received on the
validation set to select the best data representations. The skepticism around the effec-
tiveness of unsupervised learning is justified when no performance on a supervised task
is available. However, unsupervised learning can be the object of model selection us-
ing a supervised task, similarly to preprocessing, feature selection, and hyperparameter
selection. An interesting new outcome of this challenge is that the supervised tasks
used for model selection can be distinct from the tasks used for the final evaluation. So,
even though the learning algorithms are unsupervised, transfer learning is happening
at the model selection level. This setting is related to the “self-taught learning” setting
proposed in (Raina et al., 2007a). Another interesting finding is that, perhaps the de-
velopment set is not useful at all. The winners of phase 1 did not use it. They devised
a method to select a cascade of preprocessing steps to be used to produce a new ker-
nel. The same cascade was then applied to produce the kernel of the final evaluation
set(Aiolli, 2012). The importance of the degree of resemblance of the validation task
and final task remains to be determined.

In phase 1, there was a danger of overfitting by trying too many methods and relying
too heavily on the performance on the validation set. One team for instance overfitted
in phase 1, ranking 1st on the validation set, but only 4th on the final evaluation set.
Possibly, criteria involving both the reconstruction error and the classification accuracy
on the validation tasks may be more effective for model selection. This should be the
object of further research. In phase 2, the participants had available “transfer labels”
for a subset of the development data (for classification tasks distinct from the classifi-
cation tasks of the validation set and the final evaluation set). Therefore, they had the

2. In this paper, we call “domain” the input space (e.g., a feature vector space) and we call “task” the
output space (represented by labels for classification problems). We use the adjective “source” for an
auxiliary problem, for which we have an abundance of data (e.g., pictures of strangers in the Internet),
and “target” for the problem of interest (e.g., pictures of family members).
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opportunity to use such labels to devise transfer learning strategies. The most effective
strategy seems to have been to use the transfer labels for model selection again. None
of the participants used those labels for learning.

Overall, an array of algorithms were used (Aiolli, 2012; Le Borgne, 2011; Liu
et al., 2012; Mesnil et al, 2012; Saeed, 2011; Xu et al, 201 1), including linear methods
like Principal Component Analysis (PCA), and non-linear methods like clustering (K-
means and hierarchical clustering being the most popular), Kernel-PCA (KPCA), non-
linear auto-encoders and restricted Bolzmann machines (RBMs). A general methodol-
ogy seems to have emerged. Most top ranking participants used simple normalizations
(like variable standardization and/or data sphering using PCA) as a first step, followed
by one or several layers of non-linear processing (stacks of auto-encoders, RBMs,
KPCA, and/or clustering). Finally, “transduction” played a key role in winning first
place: either the whole preprocessing chain was applied directly to the final evaluation
data (this is the strategy of Fabio Aiolli who won first place in phase 1, Aiolli, 2012);
or alternatively, the final evaluation data, preprocessed with a preprocessor trained on
development+validation data, was post-processed with PCA (so-called “transductive
PCA” used by the LISA team, who won the second phase, Mesnil et al, 2012).

4. Overview of Proceedings

The following provides an overview of the workshop proceedings including the tutori-
als, invited presentations, challenge winner articles and other refereed articles submit-
ted to the workshop.

4.1. Tutorials

The workshop provided two foundational tutorials included in this proceeding. The
morning tutorial covered Deep Learning of Representations for Unsupervised and
Transfer Learning with Yoshua Bengio from the Université de Montréal (Bengio, 2012).
Deep learning algorithms seek to exploit the unknown structure in the input distribu-
tion in order to discover good representations, often at multiple levels, with higher-level
learned features defined in terms of lower-level features. The paper focusses on why
unsupervised pre-training of representations using autoencoders and Restricted Boltz-
mann Machines can be useful, and how it can be exploited in the transfer learning
scenario, where we care about predictions on examples that are not from the same dis-
tribution as the training distribution.

The afternoon tutorial entitled Towards Heterogeneous Transfer Learning was pre-
sented by Qiang Yang, Hong Kong University of Science, co-author of an authoritative
review of transfer learning (Pan and Yang, 2010). Transfer learning has focused on
knowledge transfer between domains with the same or similar input spaces. The het-
erogeneous transfer approach considers the ability to use knowledge from very different
task domains and input spaces. The authors demonstrated heterogeneous transfer learn-
ing between text classification and image classification domains even when there are
no explicit feature mappings provided. They explained that the key is to identify and



