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Preface

A student’s first encounter with abstract algebra is usually in the form of linear
algebra. This is typically followed by a course in group theory. Therefore, there is
no reason a priori that an undergraduate could not learn group representation theory
before taking a more advanced algebra course that covers module theory. In fact,
group representation theory arguably could serve as a strong motivation for studying
module theory over non-commutative rings. Also group representation theory has
applications in diverse areas such as physics, statistics, and engineering, to name a
few. One cannot always expect students from these varied disciplines to have studied
module theory at the level needed for the “modern” approach to representation
theory via the theory of semisimple algebras. Nonetheless, it is difficult, if not
impossible, to find an undergraduate text on representation theory assuming little
beyond linear algebra and group theory in prerequisites, and also assuming only a
modest level of mathematical maturity.

During the Winter term of 2008, I taught a fourth year undergraduate/first year
graduate course at Carleton University, which also included some third year students
(and even one exceptionally talented second year student). After a bit of searching,
I failed to find a text that matched the background and level of mathematical
sophistication of my students. Faced with this situation, I decided to provide instead
my own course notes, which have since evolved into this text. The goal was to
present a gentle and leisurely introduction to group representation theory, at a level
that would be accessible to students who have not yet studied module theory and
who are unfamiliar with the more sophisticated aspects of linear algebra, such
as tensor products. For this reason, I chose to avoid completely the Wedderburn
theory of semisimple algebras. Instead, I have opted for a Fourier analytic approach.
This sort of approach is normally taken in books with a more analytic flavor; such
books, however, invariably contain material on the representation theory of compact
groups, something else that I would consider beyond the scope of an undergraduate
text. So here I have done my best to blend the analytic and the algebraic viewpoints
in order to keep things accessible. For example, Frobenius reciprocity is treated from
a character point of view to avoid use of the tensor product.

vii



viii Preface

The only background required for most of this book is a basic knowledge of
linear algebra and group theory, as well as familiarity with the definition of a ring.
In particular, we assume familiarity with the symmetric group and cycle notation.
The proof of Burnside’s theorem makes use of a small amount of Galois theory
(up to the fundamental theorem) and so should be skipped if used in a course for
which Galois theory is not a prerequisite. Many things are proved in more detail
than one would normally expect in a textbook; this was done to make things easier
on undergraduates trying to learn what is usually considered graduate level material.

The main topics covered in this book include: character theory; the group
algebra and Fourier analysis; Burnside’s pg-theorem and the dimension theorem;
permutation representations; induced representations and Mackey’s theorem; and
the representation theory of the symmetric group. The book ends with a chapter on
applications to probability theory via random walks on groups.

It should be possible to present this material in a one semester course.
Chapters 2-5 should be read by everybody; it covers the basic character theory of
finite groups. The first two sections of Chap. 6 are also recommended for all readers;
the reader who is less comfortable with Galois theory can then skip the last section
of this chapter and move on to Chap. 7 on permutation representations, which is
needed for Chaps. 8—10. Chapter 10, on the representation theory of the symmetric
group, can be read immediately after Chap. 7. The final chapter, Chap. 11, provides
an introduction to random walks on finite groups. It is intended to serve as a non-
trivial application of representation theory, rather than as part of the core material of
the book, and should therefore be taken as optional for those interested in the purely
algebraic aspects of the theory. Chapter 11 can be read directly after Chap. 5, as it
relies principally on Fourier analysis on abelian groups.

Although this book is envisioned as a text for an advanced undergraduate or
introductory graduate level course, it is also intended to be of use for physicists,
statisticians, and mathematicians who may not be algebraists, but need group
representation theory for their work.

While preparing this book I have relied on a number of classical references on
representation theory, including [5-7, 10,15,20,21]. For the representation theory of
the symmetric group I have drawn from [7,12,13,16,17, 19]; the approach is due to
James [17]. Good references for applications of representation theory to computing
eigenvalues of graphs and random walks are [3,6,7]. Chapter 11, in particular, owes
much of its presentation to [7] and [3]. Discrete Fourier analysis and its applications
can be found in [3,7,22].

Thanks are due to the following people for their input and suggestions: Ariane
Masuda, Paul Mezo, and Martin Steinberg.

Ottawa Benjamin Steinberg
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Chapter 1
Introduction

The representation theory of finite groups is a subject going back to the late eighteen
hundreds. The pioneers in the subject were G. Frobenius, I. Schur, and W. Burnside.
Modern approaches tend to make heavy use of module theory and the Wedderburn
theory of semisimple algebras. But the original approach, which nowadays can be
thought of as via discrete Fourier analysis, is much more easily accessible and can
be presented, for instance, in an undergraduate course. The aim of this text is to
exposit the essential ingredients of the representation theory of finite groups over
the complex numbers assuming only knowledge of linear algebra and undergraduate
group theory, and perhaps a minimal familiarity with ring theory.

The original purpose of representation theory was to serve as a powerful tool for
obtaining information about finite groups via the methods of linear algebra, e.g.,
eigenvalues, inner product spaces, and diagonalization. The first major triumph of
representation theory was Burnside’s pg-theorem. This theorem states that a non-
abelian group of order p®q® with p, g prime cannot be simple, or equivalently, that
every finite group of order p®q® with p, q prime is solvable. It was not until much
later [2, 14] that purely group theoretic proofs were found. Representation theory
went on to play an indispensable role in the classification of finite simple groups.

However, representation theory is much more than just a means to study the
structure of finite groups. It is also a fundamental tool with applications to many
areas of mathematics and statistics, both pure and applied. For instance, sound
compression is very much based on the fast Fourier transform for finite abelian
groups, Fourier analysis on finite groups also plays an important role in probability
and statistics, especially in the study of random walks on groups, such as card
shuffling and diffusion processes [3, 7], and in the analysis of data [7, 8]; random
walks are considered in the last chapter of the book. Applications of representation
theory to graph theory, and in particular to the construction of expander graphs,
can be found in [6]. Some applications along these lines, especially toward the
computation of eigenvalues of Cayley graphs, are given in this text.

B. Steinberg, Representation Theory of Finite Groups: An Introductory 1
Approach, Universitext, DOI 10.1007/978-1-4614-0776-8_1,
© Springer Science+Business Media, LLC 2012
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Chapter 2
Review of Linear Algebra

This chapter reviews the linear algebra that we shall assume throughout the book.
Proofs of standard results are mostly omitted. The reader can consult a linear algebra
text such as [4] for details. In this book all vector spaces considered will be finite
dimensional over the field C of complex numbers.

2.1 Basic Definitions and Notation

This section introduces some basic notions from linear algebra. We start with some
notation, not all of which belongs to linear algebra. Let V and W be vector spaces.

B

If X is a set of vectors, then CX = Span X.

Mpn (C) = {m x n matrices with entries in C}.

M, (C) = M,,(C).

Hom(V,W) = {A: V — W | Ais alinear map}.

End(V) = Hom(V, V) (the endomorphism ring of V).

GL(V) = {A € End(V) | A is invertible} (known as the general linear group
of V).

GL,(C) = {A € M,(C) | Ais invertible}.

The identity matrix/linear transformation is denoted I, or I, if we wish to
emphasize the dimension 7.

Z is the ring of integers.

N is the set of non-negative integers.

Q is the field of rational numbers.

R is the field of real numbers.

Z/nZ = {[0],...,[n — 1]} is the ring of integers modulo n.

R* denotes the group of units (i.e., invertible elements) of a ring R.

Sy, is the group of permutations of {1,...,n}, i.e., the symmetric group on n
letters.

The identity permutation is denoted Id.

. Steinberg, Representation Theory of Finite Groups: An Introductory 3

Approach, Universitext, DOI 10.1007/978-1-4614-0776-8_2,
© Springer Science+Business Media, LLC 2012



2 Review of Linear Algebra

Elements of C™ will be written as n-tuples or as column vectors, as is convenient.

If A € Myun(C), we sometimes write A;; for the entry in row i and column j.
We may also write A = (a;;) to mean the matrix with a;; in row i and column j.
If k, ¢, m, and n are natural numbers, then matrices in Mk ¢n(C) can be viewed
as m x n block matrices with blocks in My (C). If we view an mk X £n matrix
A as a block matrix, then we write [A];; for the k X ¢ matrix in the 1, j block, for
1<i<mandl <j<n.

Definition 2.1.1 (Coordinate vector). If V' is a vector space with basis B =
{b1,...,bp} and v = ¢1by + --- + ¢,by, is a vector in V, then the coordinate
vector of v with respect to the basis B is the vector [v]g = (c1,...,¢,) € C™.
The map T': V — C™ given by T'v = [v] 5 is a vector space isomorphism that we

sometimes call taking coordinates with respect to B.

Suppose that T': V' — W is a linear transformation and B, B’ are bases for
V, W, respectively. Let B = {v1,...,v,} and B’ = {wy,...,wn}. Then the
matrix of T with respect to the bases B, B’ is the m x n matrix [T']g, g whose
jth column is [T'v;] 5. In other words, if

m
T'Uj = E Qi Wi,
=1

then [T]g,5 = (aij). When V = W and B = B/, then we write simply [T'| g for
[T]s,8.

The standard basis for C™ is the set {ey, . . ., en } Where e; is the vector with 1 in
the ith coordinate and 0 in all other coordinates. So when n = 3, we have

€1 = (1,0,0), € = (0, 1,0), €3 = (0, 0, 1).

Throughout we will abuse the distinction between End(C™) and M,(C) and the
distinction between GL(C™) and GL,(C) by identifying a linear transformation
with its matrix with respect to the standard basis.

Suppose dim V' = n and dim W = m. Then by choosing bases for V and W

and sending a linear transformation to its matrix with respect to these bases we see
that:

End(V) = M,(C);
GL(V) & GL,(C);
Hom(V, W) 2 My, (C).
Notice that GL,(C) 2 C* and so we shall always work with the latter. We

indicate W is a subspace of V' by writing W < V.
If W1, Wy < V, then by definition

Wiy + W, = {'lU1 +wy | w; € Wi,wp € Wz}.



2.2 Complex Inner Product Spaces 5

This is the smallest subspace of V containing W; and W,. If, in addition,
W1 N W, ={0}, then W, + W is called a direct sum, written W1 & W5. As vector
spaces, Wy @ Wy & Wi x W, via the map Wy x Wy, — W; & W, given by
(w1,wq) — wy + wo. In fact, if V and W are any two vector spaces, one can form
their external direct sum by setting V & W =V x W. Note that

dim(W; @ W3) = dim W + dim Wa.

More precisely, if B; is a basis for W; and B is a basis for W, then B, U By is a
basis for W; & Wh.

2.2 Complex Inner Product Spaces

Recall that if z = a+bi € C, then its complex conjugate is Z = a — bi. In particular,
2Z = a® + b? = |z|% An inner product on V is a map

() VxV-—C
such that, for v, w,v;,v9 € Vand c1,c3 € C:

* {(c1v1 + caup, w) = e1{vr, w) + c2(v2, w);
¢ (w,v) = (v,w);
e (v,v) > 0and (v,v) =0if and only if v = 0.

A vector space equipped with an inner product is called an inner product space.
The norm ||v|| of a vector v in an inner product space is defined by ||v|| = 1/ (v, v).

Example 2.2.1. The standard inner product on C" is given by
(@101 00s8n)y (Brss s s b)) = D aibs.

Two important properties of inner products are the Cauchy—Schwarz inequality
(v, w)| < [Jv]| - [Jw]|
and the triangle inequality
v+ wl| < [lv]l + [lwl].

Recall that two vectors v,w in an inner product space V' are said to be
orthogonal if (v,w) = 0. A subset of V is called orthogonal if its elements are
pairwise orthogonal. If, in addition, the norm of each vector is 1, the set is termed
orthonormal. An orthogonal set of non-zero vectors is linearly independent. In
particular, any orthonormal set is linearly independent.



