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Foreword

Service life of unreinforced concrete structures can be extremely long. Many
historical structures from the Roman period demonstrate this fact convinc-
ingly, such as the Pantheon in Rome, which is built of high-strength con-
crete, normal concrete, and a cupola of extremely lightweight concrete, or
Roman bridges all over Europe. They have survived thousands of years
under the effects of natural exposure, wars, and earthquakes without protec-
tion or maintenance.

If steel reinforcement is embedded in concrete, then the steel is protected
initially by a surface passivation layer in the aqueous pore solution because
of its high pH value. This passivation layer, however, is not stable in aging
concrete. Concrete is a porous material. At first, the pore space is partially
filled with water and is in equilibrium with high relative humidity. However,
the surface of reinforced concrete structures is often exposed to an atmo-
sphere with much lower humidity. As a consequence, a long-lasting drying
process begins as soon as the formwork is removed. As the pore space is par-
tially emptied, gases diluted in the surrounding air such as CO, will slowly
migrate into the pore space and react with the young cement-based matrix.
First, a thin layer of carbonated hydration products is formed near the sur-
face. When the growing thickness of this carbonated layer reaches the cover
thickness, the pH value of the pore liquid in contact with the steel reinforce-
ment is lowered and the protective passivation layer is eventually destroyed.
Hence, corrosion is initiated.

If the surface of concrete is temporarily in contact with an aqueous chlo-
ride solution such as sea water or water containing dissolved deicing salt,
then chloride ions can penetrate into the pore space of the concrete.
Fortunately, the chloride ions are filtered out of the salt solution and they are
enriched close to the surface; however, the clean water may penetrate deep
into the pore space by capillary action. Later, dissolved chloride ions migrate
deeper into the nanoporous material by slow diffusion. Whenever the chlo-
ride concentration near the steel reinforcement reaches a critical value, the
protective passivation layer may be locally destroyed and corrosion of steel
begins.

Until now, durability design had not reached the sophisticated level of
structural design. Usually one considers different stages, for instance, corro-
sion initiation, crack formation, and spalling. After initiation, the rate of
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xii  Foreword

corrosion may be rather low. But after the first cracks are generated, corro-
sion will be significantly accelerated. The authors of this book primarily
describe the formation of corrosion products and the time-dependent pressure
built up by the voluminous corrosion products. These are essential processes
that may serve as indications of the end of service life of reinforced concrete
structures.

The mechanisms of steel corrosion in concrete are briefly described. The
following chapters describe in great detail the formation of corrosion pro-
ducts at the interface between steel and concrete. In particular, the gradual
filling of the pores of hardened cement paste and the gradual filling of cracks
with corrosion products are considered. Finally, a model describing concrete
cracking due to the formation of corrosion products is presented. This
approach and the results obtained by the two authors of this book will be
very helpful for more realistic prediction of the service life of reinforced
concrete structures.

In this book, the complex processes that can be observed during the criti-
cal period of aging concrete between corrosion initiation and crack formation
in the concrete cover and then, finally, spalling of the layer near the surface
are described in great detail for the first time. A better understanding of these
complex processes will contribute to the development of more reliable pre-
diction of service life and of more efficient methods for protective interven-
tions. Therefore, the service life of reinforced concrete structures can be
extended systematically and the cost of repair measures can be substantially
reduced. This is of particular importance for countries like China, in which a
nationwide infrastructure is rapidly being built. In no other country is more
concrete being produced at this moment.

If modern construction does not become more sustainable, and if the ser-
vice life of reinforced concrete structures is not significantly extended, then
further development will be slowed because of the enormous costs for repair
and maintenance of the existing infrastructure. This book may contribute a
great deal to finding realistic and sustainable solutions to this worldwide
problem.

This volume deserves wide distribution and will hopefully be studied in
great detail by scientists and practitioners. With this book, the actual situa-
tion concerning durability and service life in construction can be improved
substantially worldwide.

Folker H. Wittmann



Preface

Since the mid 1970s, a number of durability-related problems have emerged
and stimulated research of the key factors that relate to the durability pro-
blems of concrete structures. Reinforcing steel corrosion is one of the major
reasons for deterioration of reinforced concrete structures. Steel corrosion in
concrete will induce sectional loss of steel bar, degradation of bond stress
between steel and concrete, and cracks parallel to longitudinal bars. Field
studies have suggested that cracking and spalling are most concerning to
asset owners. Structural collapse of reinforced concrete structures due to
steel corrosion is rare; cracking, rust staining, and spalling of the concrete
cover usually appear well before a reinforced concrete structure is at risk.
Therefore, the cracking of the concrete cover induced by steel corrosion is
important and is usually defined as the serviceability limit state.

The authors have focused on this research field since 1998, and have
carefully investigated the origin, mechanism, and development of corrosion-
induced cracking in concrete. Considering the importance of this topic, the
authors summarize the related research achievements obtained and share
with other researchers and engineers who are interested in this field. This
book concentrates on the concrete cracking process induced by steel corro-
sion. After the background introduction and literature review in chapter
“Introduction,” the mechanisms of steel corrosion in concrete are introduced
in chapter “Steel Corrosion in Concrete.” The composition, expansion coeffi-
cient, and elastic modulus of steel corrosion are carefully investigated in
chapter “The Expansion Coefficients and Modulus of Steel Corrosion
Products,” considering the importance of the properties of steel corrosion in
concrete cracking models. With these parameters of steel corrosion, the dam-
age analysis is applied to analyze the corrosion-induced concrete cracking
process in chapter “Damage Analysis and Cracking Model of Reinforced
Concrete Structures With Rebar Corrosion,” and the critical thickness of the
rust layer at the moment of surface cracking of concrete cover is studied in
chapter “Mill Scale and Corrosion Layer at Concrete Surface Cracking.” In
chapter “Rust Distribution in Corrosion-Induced Cracking Concrete,” the
authors investigate the rust distribution in the corrosion-induced cracks and
find that the rust did not fill the corrosion-induced cracks in the concrete
cover before concrete surface cracking. A Gaussian function is proposed to
describe the nonuniform spatial distribution of corrosion products in chapter
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“Nonuniform Distribution of Rust Layer Around Steel Bar in Concrete.” The
shape of the corrosion-induced cracks in the concrete cover is observed in
chapter “Crack Shape of Corrosion-Induced Cracking in the Concrete
Cover,” and a linear model was proposed to describe the variation in the
total circumferential crack width along the radial direction in the concrete
cover. Rust distribution at the steel—concrete interface is presented in chap-
ter “Development of Corrosion Products-Filled Paste at the Steel—Concrete
Interface”; and the penetration of corrosion products into the porous zone of
concrete and formation of a corrosion layer at the steel—concrete interface
process simultaneously. Finally, in chapter “Steel Corrosion-Induced
Concrete Cracking Model,” an improved corrosion-induced cracking model
is proposed, which considers the corrosion layer accumulation and corrosion
products filling occurring simultaneously in concrete. The time from corro-
sion initiation to concrete surface cracking is discussed. The need for more
research regarding the corrosion-induced cracking model is also discussed in
this book.

The authors hope this book is useful for researchers interested in the
durability of concrete and concrete structure fields, for industry engineers
who pay attention to the deterioration mechanisms and the life cycle of rein-
forced concrete structures, and for graduate students whose research topics
include corrosion-induced deterioration of reinforced concrete structures.
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