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Preface

The past two decades has witnessed the emergence of stochastic nonlinear partial
differential equations (SPDEs) and their dynamics in different fields such as physics,
mechanics, finance and biology etc. For example, there are corresponding SPDEs de-
scriptions for the atmosphere-oceanic circulation, for the nonlinear wave propagation
in random media, for the pricing of risky assets, and the law of fluctuation of stock
market prices. In early 1970s, mathematicians such as Bensoussan, Temam, Pardoux,
just to name only a few, initiated the mathematical studies of SPDEs and the stud-
ies of corresponding random dynamical systems began slightly later afterwards. In
the middle 90’s, Crauel, Da Prato, Debussche, Flandoli, Schmalfuss, Zabczyk et al es-
tablished the framework of random attractors, Hausdorff dimension estimates and
Invariant measure theory‘of random dynamic systems with applications to stochastic
nonlinear evolutionary equations. Recently, there are theoretical and numerical as-
pects of nonlinear SPDEs has been developed, resulting in many fruitful achlevement
and subsequently, many monographs were published.

The authors of this book had been working in the fields of nonlinear SPDEs and
random dynamics as well as stochastic processes such as Lévy process and fractional
Wiener process for more than a decade. Seminars were held and discussions had been
going with scholars all over the world since then. Interesting and preliminary res-
ults were made on some mathematical problems in climate, ocean circulation and
propagation of nonlinear waves in random media.

The aim of book is twofold. First, to give some preliminaries that are of importance
to SPDEs. Second, to introduce latest recent results concerning several important SP-
DEs such as Ginzburg-Landau equation, Ostrovsky equation, geostrophic equations
and primitive equations in climate. Materials are presented in a concise way, hoping
to bring readers into such an interesting field of modern applied mathematics.

Chapter one introduces preliminaries in probability and stochastic processes, and
Chapter 2 briefly presents the stochastic integral and Ito formula, which plays a vital
role in stochastic partial differential equations. Chapter 3 discusses the Ornstein-
Ulenbeck process and some linear SDEs. Chapter 4 establishes the basic framework
of stochastic dynamic systems. In Chapter 5, latest results on several SPDEs emerging
from various physics backgrounds are given.

Last but not the least, I would like to take the opportunity to express sincere grat-
itudes to Dr. Mufa Chen, Member of Chinese Academy of Sciences, and Dr. Jian Wang
at Fuzhou University, from whom we benefited constantly in preparing this book.

Boling Guo
August 20, 2016
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1 Preliminaries

This chapter contains some preliminaries in probability and stochastic processes,
especially some basic properties of the Wiener process, Poisson process and Lévy pro-
cess. Because many contents in this chapter can be found in the other literature, we
here only give the conclusions and omit the proofs.

1.1 Preliminaries in probability
1.1.1 Probability space

There are many uncertainties and randomness in our natural world and social en-
vironments. A lot of observations and tests are asking for the research in random
phenomena. A random experiment must contain certain properties, usually requir-
ing that (i) the experiment can be repeated arbitrarily many times under the same
conditions and (ii) the outcome for the experiment may be more than one and all the
possible outcomes are known, but one can’t accurately predict which outcome would
appear in one trial.

The random experiment is usually called test for short and is expressed as E. Each
possible result in E is called a basic event or a sample point, expressed as w. The set of
all sample points in E, denoted by Q, is called the space for basic event, and the set of
sample points is called event and is expressed in capital letters A, B, C, ---. The event
A occurs if and only if one of the sample points in A occurs.

Take the “roll the dice” game as a simple example. The outcome can’t be predicted
in the experiment when the dice was rolled once, but certainly it is one of the outcomes
“point one,” ---, “point six.” Hence, Q = {1, 2, 3, 4, 5, 6} consists of six elements, repres-
enting the six possible outcomes in the “roll the dice” experiment. In this experiment,
“roll prime number point” is an event and consists of three basic events 2, 3, 5, which
we denote as A = {2, 3,5}.

In practice, various manipulations such as intersection, union or complement to
subsets are needed. It is nature to ask that whether the result is still an event after such
manipulations. This leads to the concept of g-algebra.

Definition 1.1.1. Let Q be a sample space, then the set # ={A : AcQ} is called a
o-algebra if it satisfies

(1) QeZ;

(2) ifAe Z,then A :=Q\A ¢ Z;

() ifAie Z,thenuX A e Z.

Then (Q, %) is called a measurable space and each element in .7 is measurable.
Two trivial examples are .7 = {@, Q} and .# contains all the subsets of Q. These two
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examples are too special to be studied in mathematics. The first one is so small that we
cannot get enough information that we are interested in, while the latter one is so big
that it is difficult to define a probability measure on it. Therefore, we need to consider
other intermediate o-algebra we are interested in. For a collection C of subsets of Q, we
denote o(C) the g-algebra generated by C, that is the smallest o-algebra containing C.

Definition 1.1.2. Let (Q, .#) be a measurable space and P be a real valued function
defined on the event field .#. If P satisfies
(1) foreach Aj € Z, it has P(4;) > 0;

2) PQ)=1;
(3) forAje Z(i=1,2, -, c0) withi = j, AjA; = Ain Aj = @, it has

P(u A)&ZP(A)

i=1

then P is called probability measure, and probability for short.

The above three properties are called Kolmogorov’s axioms, named after Andrey
Kolmogorov, one of the greatest Russian mathematicians. Such triple (Q,.%#,P) is
called a measure space or a probability space in probability theory. In Kolmogrov’s
probability theory, .# doesn’t have to include all the possible subsets of Q, but only
includes the subsets we are interested in. In such a measure space, .Z is usually called
an event field and the element in .# is called an event or a measurable set. The event
A = () is called certain event since the possibility for A to occur is P(Q) = 1 and the
event A = @ is called impossible event accordingly since P(@) = 0 thanks to properties
(2) and (3).

In the following, we regard Q in (Q,.#, P) as sample space, .# as event field
in O, and P as a determinate probability corresponding to (Q, #). The properties in
the definition are called non negativity, normalization, and complete additivity of
probability, respectively.

We also note that for a fixed sample space Q, many o-algebra can be construc-
ted (hence not unique), but not every o-algebra is an event field. For example, let

= {0,0Q} and %, = {@, A, A, Q}, where A c Q. By definition, .# is certainly an
event field, but .%; is not necessarily an event field since A is possibly not measurable
under P.

After introducing the probability space, the relations and operations among
events and the conditional probability can be considered. Two events A and B are
called mutually exclusive, if both A, B can’t occur in the same experiment (but it is pos-
sible that neither of them occurs). If any two events are exclusive, then these events
are called mutually exclusive pairwise.

Theorem 1.1.1. The probability for the sum of some of mutual exclusion events is equal
to the sum of every event, i.e.,
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P(A1 +A;+-- ) = P(A]) +P(A2) oo ay
if Ajn Aj = @ wheneveri # j.

The conditional probability measures the probability of an event under the assump-
tion that another event has occurred. For example, we are interested in the probability
of “prime number occurs” in the “roll the dice” game, under the assumption that we
have known that the outcome in one trial is an odd number. We give the definition
below.

Definition 1.1.3. Let (Q,.#, P) be a probability space, A,B € % and P(B) + 0. Then
the conditional probability of A given B or the probability of A under the condition B is
defined by

P(A|B) = P(AB)/P(B), (1.1.1)
where P(AB) = P(A n B) = P(A and B both occur). =

We also take the “roll the dice” as an example. Consider the event A=“prime point
occurs,” B="odd point occurs,” and C="“even point occurs,” that is

A={2,3,5}, B={1,3,5}, C=1{2,4,6}.

It can be calculated that the (unconditional) probability of A is 1/2. Now, if the event
B is assumed to have occurred, then we ask for the probability of A. By the definition,
the conditional probability of A under B is P(A|B) = P(AB)/P(B) = P({3, 5})/P(B) = 2/3.
Similarly, if the event C is assumed to have occurred, or we know that C has occurred,
then the conditional probability of A4 is P(A|C) = 1/3.

Another important concept in probability is independence. Consider two events A
and B. Generally speaking, the conditional probability P(A) of A is different from
P(A|B). If P(A|B) > P(A), then the occurrence of B enlarges than the probability of
A. Otherwise, if P(A) = P(A|B), then the occurrence of B has no influence on A. In the
latter case, the events A, B are said to be independent and

P(AB) = P(A)P(B). (1.1.2)
Definition 1.1.4. If A, B satisfy eq. (1.1.2), then A, B are said to be independent.

Definition 1.1.5. Let Ay, A;, -+ be at most countably many events. If for any finite events
Aiy, Aiyy -, Aiy,» there holds

P(AyAj, -+ Ay,) = P(Ai))P(AL) - P(Ay,), (1.1.3)
then the events Ay, A, ---, are said to be independent.

It is noted that the events in a subset of independent events are also independent.
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Theorem 1.1.2. Let Ay, Ay, ---, A, be independent, then
P(A1A; -+ Ap) = P(A1)P(Ay) - P(Ap).

Next, we introduce the law of total probability and Bayes formula. Let By, B;, ---be at
most countably many events, mutually exclusive, and at least one of them happens in
an experiment. That is, B;B; = @ (impossible event), wheni # jand B; + By +--- = Q
(certain event). Given any event A, noting ( is a certain event, one gets A = AQ =
AB; + AB; + ---, where AB;, AB,, --- are mutually exclusive as Bj, B,, --- are mutually
exclusive. Hence, by Theorem 1.1.1

P(A) = P(ABy) + P(AB;) + - -+, (1.1.4)

and by the definition of conditional probability, we have P(AB;) = P(B;)P(A|B;), which
follows that

P(A) = P(B)P(A|By) + P(B2)P(A|By) + - - -. (1.1.5)

This formula is called the law of total probability. By eqs (1.1.4) and (1.1.5), the
probability of P(A) is decomposed into the sum of many parts. It can be under-
stood that the events B; is a possible cause leading to A. The probability of A,
under the possible cause B;, is the conditional probability P(A|B;). Intuitively, the
probability of A, P(A), must be between the smallest and largest P(A|B;) under this
mechanism, and also because the probabilities of P(B;) are different in all kinds of
causes, the probability P(A) should be a weighted average of P(A|B;), with the weight
being P(B;). '
Under the assumption of the law of total probability, one has

S

P(B|A) =P(AB;)/P(A)

=P(B)P(A|By)| )_ P(B)P(A|B). (1.1.6)
j 1

This formula is called Bayes formula. Formally, it is just a simple deduction of the
conditional probability and the law of total probability. It is famous for its explan-
ation in reality and philosophical significance. For P(B;), it is the probability of B;
under no further information. Now, if it has new information (we know that A has
occurred), then the probability of B; has a new estimate. If the event of A is viewed
as a result, and By, B,, ---are the possible causes of A, then we can formally view
the law of total probability as “from the reason to result,” while Bayes formula
can be viewed as “from the result to reasons.” In fact, a comprehensive set of stat-
istical inference methods has been developed by the idea, which is called “Bayes
statistics.”
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1.1.2 Random variable and probability distribution

Random variable, as the name indicates, is a variable whose value is determined
randomly. Strictly speaking, given a probability space (Q, .#, P), random variable X is
defined as a measurable mapping from Q to R?. When d > 2, X is usually called a ran-
dom vector, and d is the dimension. Random vectors can be divided into discrete and
continuous types according to the value of random variables. The research of random
variable is the content in probability, because in a random experiment, what is con-
cerned are variables, which are usually random and are often associated with certain
problems of interests.
Next, we consider the distribution of random variable.

Definition 1.1.6. Let X be a random variable. Then the function
F(x) =P(X <x), —0o<X<oo, o RLLT)

is called the probability distribution function of X, where P(X < x) denotes the
probability of the event {w : X(w) < x}.

Here, it doesn’t request the random variable to be discrete or continuous. It’s obvious
that the distribution function has the following properties: (1) F(x) is a monotonically
nondecreasing function, (2) F(x) - 0 as x — —oo, and (3) F(x) - 1as x — oo.

First, let us consider a discrete random variable X taking possible values ay, a,, ---.
Then p;=P(X = a;), i=1,2, ---is called the probability function of X. An important ex-
ample of the discrete distribution is the Poisson distribution. If X is a non-negative
integer-valued random variable with its probability function p;=P(X =1) =e™A}/i!,
then X is said to subject to Poisson distribution, denoted by X ~ P(A), where A > 0
is a constant.

For the distribution of continuous random variable, it can’t be described as
the discrete ones. One method to describe continuous random variable is to use
distribution function and probability density function.

Definition 1.1.7. Let F(x) be the distribution function of a continuous random variable X,
then the derivative f(x) = F'(x) of F(x), if exists, is called the probability density function
of X.

The density function f(x) has the following properties:
(M fO)20.

@ [, f0)dx=1.

(3) Forany a < b, there holds
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b
P(a < X < b) = F(b) - F(a) - f Foadx.

An important example of continuous distribution is the normal distribution, whose
probability density function is

flx)= z;e_(x"“)z/z"z, —00 < X < 00,
o

The associated random variable is usually denoted by X ~ N(u, 0?).

The above conclusions can be generalized to random vectors. Consider a
d-dimensional random vector X = (Xi, ---,Xy), whose components Xj, ---, X, are
one-dimensional random variable. For A c R", X € A denotes {w : X(w) € A}.

Definition 1.1.8. A nonnegative function f(x;, ---, x,) on R" is said to be the probability
density function of X if

P(X ¢ A) = fAf(xl, SR I v (118)

forany A c R,

We remark that similar to the one-dimensional case, we can introduce the probability
distribution function

F(XI!XZ! “';Xn) = P(Xl < XI!XZ < X2, "',Xn an)’

for any random vector X = (Xi, -, X,,). For the random vector X, each competent Xj is
one-dimensional ranidom variable and has its own one-dimensional distribution func-
tion Fj, fori = 1, .-+, n, which are called the “marginal distribution” of distribution F
or of randofh vector X. It is easy to see that the marginal distribution is completely de-
termined by the distribution F. For example, let X = (Xj, X;) with probability density
function f(x1, x2). Since (X; < x1) = (Xi < x1, X2 < 00), we have

Fi(x;) = P(X; < xq) = f_ 1 dty /:wf(tl,tz)dtz,

and the probability density function of X; is given by

dFi(x1)

fila) = o

= fwf(xl,xz)dxz.

Similarly, in the multi dimensional case, we have for X = (Xi, ---, Xp) that

dFy(x1) _

flxq) = dx;

f o f f(XI!XZ’ "',xn)dXZ"'an.
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We recall the conditional probability, based on which independence is introduced.
Now, we discuss the conditional probability distribution and the independence of ran-
dom variables. We also take the continuous random variables for example. Given two
random variables X; and X,, we let f(x1, x2) be the probability density function of the
two-dimensional random vector X = (X;, X>). Consider the conditional distribution of
X1 under the condition a < X, < b. Since

P(Xl <xila<Xp< b) = P(X] <xp,a<Xp< b)/P(a <X < b),

by the marginal distribution function f; of X5, it follows

g X1 b b
PX; <xjla<X;<b)= f dﬁf f(t, fz)dtz// f(t)dt,,
¥ —00 a a

which is the conditional distribution function of X;. The conditional density function
can be obtained by derivative on x1, i.e.,

b b
fikila < X, < b) = / fGa )t/ f frlt)dta.
a a
It is interesting to consider the limited case a = b. In this limit, we obtain

filalx) =fi(x1]X5 = x2)
=]111H(1)f1(X1|X2 <Xp<x+h)

X2+h Xo+h

~ lim , )b/ li t)dt
lim a flxy, t2) 2/h1_1,1(1) ’ H(t)dt

=f(x1, x2)/f>(x2).

This is the conditional density function of X; under the condition X, = x,, and we need
f>(x2) > 0 such that the above equality makes sense. It can be rewritten as

fx1, x2) = H()fi(x11x2), (1.1.9)

corresponding to the conditional probability formula P(AB) = P(A)P(B). In higher
dimensional case, X = (Xi, ---,X,) with probability density function f(xi, ---, xp),
one has

fOxq, -, xn) = 81, s Xi)AXki15 -+ 5 Xn|X15 o+ 5 XK),

where g is the probability density of (Xi, ---, Xi), and h is the conditional probability
density of (Xi,1, -+, X,) with the condition X; = xq, ---, X¢ = x. The formula can also
be regarded as definition of the conditional probability density h. Integrating eq. (1.1.9)
w.r.t. X7, we have
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fixr) = f " foa x)dxa = ] " fitabfto)do. (1.110)

Next, we discuss the independence of random variables. By the above notations, if
fi(x1]x2) depends only on x; and is independent of x;, then the distribution of X; is
completely unrelated with the value of X,. That is the stochastic variables X; and X,
are independent in probability.

Definition 1.1.9. Let f(xi, ---,x,) be the joint probability density function of the
n-dimensional random variable X = (X, -+, Xy), and the marginal density functions
of X are fi(xy),i=1, -, n.If

f(ny '“)Xn) =f1(xl) v ‘fn(xn)x

then the stochastic variables X1, ---, X, are mutually independent or independent for
short.

The concept of independence of variables can also be considered in the following
view. If Xi, ---, X, are independent, then the probabilities of the variables are not
affected by other variables, hence the events

Ay =(a; <Xy < by), -+, An = (an < Xn < bp)

are independent.

1.1.3 Mathematical expectation and momentum

The probablllty distribution of random variable we introduced above is the most com-

plete characterization of the probability properties of random variables. Next, we
consider the mathematical expectation, momentum, and related topics. Let us first
consider the mathematical expectation.

Definition 1.1.10. If X is a discrete random variable, taking countable values ay, ay, -
with probability distribution P(X = a;) = p;,i = 1,2, -, and 3 7, |ailp; < oo, then
EX =Y, aipi is called the mathematical expectation of X.

If X is a continuous random variable with probability density function f(x) and
[ IxIf(x)dx < oo, then E(X) = [ xf(x)dx is defined as the mathematical expectation
of X.

Next, we consider the conditional mathematical expectation of random variables. Let
X, Y be two random variables, we need to compute the expectation E(Y|X = x) or
simply E(Y|x) of Y under the given condition X = x. Suppose that the joint density of
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(X,Y) is given, then the conditional probability density function of Y is f(y|x) under
the given condition X = x. We then have by definition that

E(Y|x) = /: N yf(yix)dy.

The conditional mathematical expectation reflects the mean change of Y with respect
to x. Hence, E(Y|X) is a random variable and changes with X. In statistics, the condi-
tional expectation E(Y|x) is regarded as a function of x and is usually termed as the
“regression function” of Y to X.

From conditional mathematical expectation, we can get an important formula to
the unconditional mathematical expectation. Recall the law of total probability P(A) =
Y " P(B;)P(A|B)), This can be understood as to find the unconditional conditional prob-
ability P(A) from the conditional probability P(A|B;) of A. In this regard, P(A) is the
weighted average of conditional probability P(A|B;) with weight being the probability
P(B;). By analogy, the unconditional expectation of ¥ should be equal to the weighted
average of the conditional expectation E(Y|x) of x with weight propoftional to the
probability density fi(x) of X, i.e., ‘

E(Y) = f ~ BOYIOf,00dx.

oo

The proof is not difficult and omitted here. Recalling that right-hand side (RHS) mem-
ber of this formula is just the mathematical expectation of the random variable E(Y|X)
with respect to X, hence we have

E(Y) = E(E(Y|X)).
Next, we consider the conditional expectation under o-subalgebra of Z.

Definition 1.1.11. Let (Q, .#, P) be a probability space and 9 ¢ F.IfX : Q — R"is an
integrable random variable, then E(X|%) is defined as a random variable satisfying
(i) E(X|¥4)is ¢ measurable;

(i) [,XdP= [, E(X|9)dPVA<€%.
The conditional mathematical expectation has the following properties:

Proposition 1.1.1.
(i) Let X be % measurable, then E(X|%) = X almost surely (a.s.)

(ii) Let a, b be constants, then E(aX + bY|¥) = aE(X|¥) + bE(Y|¥) a.s.
(iii) Let X is & measurable and XY be integrable, then E(XY|¥) = XE(Y|¥) a.s.
(iv) Let X be independent of ¢, then E(X|¥) = E(X) a.s.

(v) Let & c ¢4, then



