

3rd Edition

WILEY INTERNATIONAL EDITION

Restricted: Not for Sale in North America

WILLIAM G. HOPKINS • NORMAN P. A. HÜNER

Introduction to Plant Physiology

Third Edition

William G. Hopkins and Norman P. A. Hüner

The University of Western Ontario

ACQUISITIONS EDITOR

Keri Witman

MARKETING MANAGER

Clay Stone

SENIOR PRODUCTION EDITOR Valerie A. Vargas

SENIOR DESIGNER

Karin Gerdes Kincheloe

Cover credit: © Stuart Westmorland/The Image Bank/Getty Images

This book was set in 10/12 Janson Text by UG / GGS Information Services, Inc. and printed and bound by Courier/Westford. The cover was printed by Phoenix Color.

This book is printed on acid free paper.

Copyright © 2004 John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc. 222 Rosewood Drive, Danvers, MA 01923, (508) 750-8400, fax (508) 750-4470. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, E-Mail: PERMREQ@WILEY.COM. To order books or for customer service please call 1-800-CALL WILEY (225-5945).

ISBN 0-471-38915-3 ISBN 0-471-37917-4 (WIE)

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Preface

This third edition of *INTRODUCTION TO PLANT PHYSIOLOGY* is, like its predecessors, intended as a textbook for undergraduate students encountering plant physiology for the first time. Its purpose is to help students gain a solid foundation in fundamental concepts of plant physiology and to illustrate how those concepts are supported by evidence from physiological, biochemical, biophysical, molecular, and genomic experiments.

The text assumes that the student has completed a first course in botany (or biology with a strong botanical component) and chemistry. It is appropriate for a one-semester course in plant physiology for general students, and as an introduction for those who will go on to advanced studies in agonomy, plant physiology, environmental plant physiology, or physiological plant ecology.

Users of the two prior editions will find familiar ground as well as significant changes. In this edition, we have retained both the emphasis on "whole plant" physiology and the epistemological approach, or how we know what we think we know. Modern textbooks, in an effort to present all the latest information in the field, often fall short in the presentation of the scientific process. However, rather than simply cataloging the current state of our knowledge, we have focused on ideas and experimental approaches. We have attempted to illustrate how we arrived at our present level of understanding, where there is significant uncertainty, and where we might be headed in the future. Finally, by interpreting laboratory studies in the context of environmental physiology, we hope to show students how plants work in the real world.

The organization of the third edition differs significantly from the earlier two editions. Part 1 (Chaps. 2–9) begins with an introduction to the principles of bioenergetics and discusses energy metabolism and the assimilation of carbon and nitrogen. Cell and plant water relations and the uptake of mineral nutrients are covered in Part 2 (Chaps. 10–13). Plant growth and development and their control by hormones, light, and temperature are the subject of Part 3 (Chaps. 14–20). In Part 4 (Chaps. 21–22), we discuss the physiology and biochemistry of plant acclimation to environmental and biotic stress. In Part 5 we review the significant potential for plant physiology in modern biotechnology. We believe that this organization represents a logical flow of concepts and information essential to an understand-

ing of plant form and function. We want to help the student understand the importance of sunlight as the ultimate source of energy for the biosphere and to underscore the critical dependence of water relations, growth and development, and metabolism on the fundamental principles of energy flow.

We begin with an introductory chapter that provides an overview of the plant cell. The emphasis is on the principal macromolecules that serve as building blocks for cells, followed by cell structure and the organization of cells into tissue and organ systems. This chapter is intended as an introduction and review, touching on the terminology of botany and cell biology that provides a foundation for the discussions that follow. Chapter 2 summarizes the general principles of bioenergetics, which are used throughout the book. Since light is the ultimate source of energy to sustain life on Earth, we discuss the physical nature of sunlight in Chapter 3 with an emphasis on the dual role of sunlight—as both a source of energy and information to the plant with respect to its environment. Chapters 4 to 7 deal with energy trapping, energy utilization in the biosynthesis of carbohydrates, and the subsequent allocation and partitioning of carbohydrate throughout the plant. An underlying theme of these chapters is the notion of the leaf as a photosynthetic "green machine." In addition, we have added discussions of recent advances in our understanding of metabolic feedback regulation, photoinhibition, and photoprotection. These chapters are followed by a discussion of carbon oxidation processes (Chapter 7) which release the stored energy for use in growth and development. We have chosen to integrate the chapter on nitrogen assimilation (Chapter 8) with the chapters on photosynthesis and carbon metabolism. Our rationale for this is based on the fact that N-assimilation is dependent on photosynthesis and respiration as the sources of both reducing potential for nitrogen fixation and carbon skeletons for the biosynthesis of amino acids. Part I ends with a discussion of the role that these metabolic processes play in regulating plant productivity (Chapter 9).

For this edition, many arguments have been rewritten in order to clarify their presentation. As well, many topics have been expanded and new concepts introduced. In Chapter 1, the biochemistry of lipids, proteins, and carbohydrates has been integrated into the text in order to better reflect the significance of these macromolecules as fundamental cellular building blocks. A description of ubitquitin, proteosomes, and the processing of proteins has been added to the chapter on patterns in plant development. The treatment of hormones has been revised. Their biochemistry and metabolism are treated in one chapter in order to better compare biochemical origins and metabolic relationships. The second chapter reviews hormonal control of development. This chapter emphasizes the interactive roles of hormones in the control of specific developmental processes, such as seed germination, stem elongation, and flowering. A Box describing the cell cycle and control of cell division has been added to Chapter 16, and the text has been revised to reflect what is known about the interactions of cytokinins with the cell cycle.

iv

The chapter on stress physiology has been revised to reflect growing interest in ecophysiology and includes a discussion of recent advances in the molecular biology of plant stress tolerance, a very active area of research in plant biology with important implications with respect to agricultural productivity and a sustainable environment. We have added two new boxes to this chapter. One box describes the theory and use of chlorophyll fluorescence, an increasingly important

tool for assessing plant stress and acclimation. The other box compares plant adaptation and acclimation to two distinct and important biomes, deserts and rainforests. Overall, this chapter integrates many of the basic concepts that are developed in early chapters in order to illustrate how plants adjust to an ever changing environment.

In order to enhance the flow of ideas and concepts, we have avoided the use of literature citations in the text. At the end of each chapter is a list of recommended readings, through which students may access the primary literature.

We are grateful to the many colleagues who have generously provided photographs or who have consented to have their work included in this book. Finally, we acknowledge our debt to the many students who, over the years, have contributed far more to this book than they might ever know. In the end, of course, responsibility for any omissions or errors is ours alone.

William G. Hopkins Norman P. A. Hüner London, Ontario January, 2003

To the Student

This book is about how plants work. It is about the questions that plant physiologists ask and how they go about seeking answers to those questions. Most of all, it is about how plants do the things they do in their everyday life.

In spite of its presumed objectivity, science ultimately relies on the interpretation of experimental results by scientists—interpretations that are often found to be inadequate and filled with uncertainty. However, as results and observations accumulate, interpretations are refined and the degree of uncertainty diminishes. This is the nature of scientific discovery and source of the real excitement of doing science. In this book, we have attempted to convey some sense of this scientific process.

The book contains several pedagogic features that are intended to assist your learning. New terms and concepts are identified with boldfaced type. Some of these terms may be boldfaced when encountered a second time, for emphasis. You should attempt to understand each boldfaced term—what it means and its significance to the problem under discussion.

Each chapter concludes with a Summary, which attempts to highlight the principal topics discussed in that chapter. There is also a series of review questions called Chapter Review. For many of these questions, there is no single or simple answer. The questions are intended as a guide to your review of the chapter and, perhaps, as a stimulus to help you integrate diverse aspects or to extend what you have learned to new situations.

At the end of each chapter, however, we provide a selection of further readings. Some of these readings are reports of research results and some are review articles or opinion. If you find a particular topic interesting and wish to learn more about it, the listed publications are your gateway into the relevant primary research literature. Plant physiology is a very active field of study and new revelations about how plants work are reported in the literature almost daily. To learn what has happened since this book was written, seek out recent publications in the same journals cited in the reference lists. Many of the listed journals publish review articles that summarize the status of a topic up to that point.

We hope that, through this book, we are able to share with you some of our fascination with the excitement, mystery, and challenge of plant physiology.

> William G. Hopkins Norman P. A. Hüner

Contents

Chapter 1 • Cells, Tissues, and Organs: The Architecture of Plants 1

1.1 The Plant Cell 2

1.2 Building Blocks: Lipids, Proteins, and Carbohydrates 2

- 1.2.1 Lipids Åre a Class of Molecules That Includes Fats, Oils, Sterols, and Pigments 4
- 1.2.2 Proteins Play a Central Role in the Biochemistry of Cells and Are Responsible for Virtually All the Properties of Life as We Know it 6
- 1.2.3 Carbohydrates Are the Most Abundant Class of Biological Molecules 8

1.3 Biological Membranes 11

- 1.3.1 The Membrane Lipid Forms a Bilayer, a Highly Fluid but Very Stable Structure 11
- 1.3.2 Membranes Contain Significant Amounts of Protein 12

1.4 Cellular Organelles 13

- 1.4.1 Most Mature Plant Cells Contain a Large, Central Vacuole 13
- 1.4.2. The Nucleus Is the Information Center of the Cell
- 1.4.3 The Endoplasmic Reticulum and Golgi Apparatus Are Centers of Membrane Biosynthesis and Secretory Activities 14
- 1.4.4 The Mitochondrion Is the Principal Site of Cellular Respiration 15
- 1.4.5 Plastids Are a Family of Organelles with a Variety of Functions 15
- 1.4.6 Microbodies Are Metabolically Very Active 16

1.5 Cytoskeleton 16

1.6 The Extracellular Matrix 17

- 1.6.1 The Primary Cell Wall Is a Flexible Network of Cellulose Microfibrils and Cross-Linking Glycans 17
- 1.6.2 The Cellulose–Glycan Lattice is Embedded in a Matrix of Pectin and Protein 19
- 1.6.3 Cellulose Microfibrils Are Assembled at the Plasma Membrane as They Are Extruded into the Cell Wall 20

- 1.6.4 The Secondary Cell Wall Is Deposited on the Inside of the Primary Wall in Maturing Cells 21
- 1.6.5 Plasmadesmata Are Cytoplasmic Channels Extend Through the Wall to Connect the Protoplasts of Adjacent Cells 21

1.7 Tissues and Organs 22

- 1.7.1 Tissues Are Groups of Cells That Form an Organized, Functional Unit 22
- 1.7.2 Meristems Are Regions of Perpetually Dividing Cells
- 1.7.3 Parenchyma Is the Most Abundant Living Tissue in Plants 24
- 1.7.4 Supporting Tissues Are Distributed
 Throughout the Primary and Secondary Plant Bodies
 24
- 1.7.5 Vascular Tissues Are the Principal Conducting Tissues for Water and Nutrients 25
- 1.7.6 Epidermis Is a Superficial Tissue That Forms a Continuous Layer over the Surface of the Primary Plant Body 25

1.8 Plant Organs 26

- 1.8.1 Roots Anchor the Plant and Absorb Water and Minerals from the Soil 26
- 1.8.2 Stems Elevate the Photosynthetic Organs, the Leaves, Toward the Sun 26
- 1.8.3 Leaves Are the Principal Photosynethic Organs 27

Summary 27

Chapter Review 28

Further Reading 28

Part 1 • Plants and Energy 29

Chapter 2 • Bioenergetics and ATP Synthesis 31

2.1 Bioenergetics and Energy Transformations in Living Organisms 31

2.1.1 The Sun Is a Primary Source of Energy 31

2.1.2 What Is Bioenergetics? 32

vi Contents

2.1.3 The First Law of Thermodynamics Refers to Energy Conservation 32 2.1.4 The Second Law of Thermodynamics Refers to Entropy and Disorder 33 2.1.5 The Ability to Do Work is Dependent on the Availability of Free Energy 33 2.1.6 Free Energy Is Related to Chemical Equilibria 34 2.2 Energy Transformations and Coupled Reactions 2.2.1 Free Energy of ATP Is Associated with Coupled Phosphate Transfer Reactions 35 2.2.2 Free Energy Changes Are Associated with Coupled Oxidation-Reduction Reactions 36

2.3 Energy Transduction and the Chemiosmotic Synthesis of ATP 39

- 2.3.1 Chloroplasts and Mitochondria Exhibit Specific Compartments 39
- 2.3.2 Chloroplasts and Mitochondria Synthesize ATP by Chemiosmosis 41

Summary 43

Chapter Review 43

Further Reading 43

Chapter 3 • The Dual Role of Sunlight: **Energy and Information** 45

3.1 The Physical Nature of Light 45

- 3.1.1 Light Is Electromagnetic Energy Which Exists in Two Forms 45
- 3.1.2 Light Can Be Characterized as a Wave Phenomenon
- 3.1.3 Light Can Be Characterized as a Stream of Discrete Particles 46
- 3.1.4 Light Energy Can Interact with Matter 47
- 3.1.5 How Does One Illustrate the Efficiency of Light Absorption and Its Physiological Effects 49
- 3.1.6 Accurate Measurement of Light Is Important in Photobiology 50
- 3.2 The Natural Radiation Environment 51

3.3 Photoreceptors Absorb Light for Use in a Physiological Process 52

- 3.1.1 Chlorophylls Are Primarily Responsible for Harvesting Light Energy for Photosynthesis 52
- 3.3.2 Phycobilins Serve as Accessory Light-Harvesting Pigments in the Red Algae and Cyanobacteria or as a Critical Regulatory System in Green Plants 54
- 3.3.3 Carotenoids Account for the Autumn Colors 55
- 3.3.4 Cryptochrome Is a Photoreceptor Sensitive to Blue and UV-A Light 57
- 3.3.5 UV-B Radiation May Act as a Developmental Signal
- 3.3.6 Flavonoids Provide the Myriad of Flower Colors and Act as a Natural Sunscreen 58
- 3.3.7 Betacyanins and Beets 60

Summary 60

Chapter Review 61

Further Reading 61

Chapter 4 • Energy Conservation in Photosynthesis: Harvesting Sunlight 63

4.1 Leaves Are Photosynthetic Machines Which Maximize the Absorption of Light 64

- 4.2 Photosynthesis Is an Oxidation-Reduction Process
- 4.3 Photosynthetic Electron Transport 68
 - 4.3.1 Photosystems Are Major Components of the Photosynthetic Electron Transport Chain 68
 - 4.3.2 Photosystem II Oxidizes Water to Produce Oxygen
 - 4.3.3 The Cytochrome Complex and Photosystem I Oxidize Plastoquinol 72
- 4.4 Photophosphorylation Is the Light-Dependent Synthesis of ATP 73
- 4.5 Lateral Heterogeneity Is the Unequal Distribution of Thylakoid Complexes 75
- 4.6 Light-Harvesting Complexes Are Superantenna Complexes that Regulate Energy Distribution
- 4.7 Photoinhibition of Photosynthesis: Photoprotection versus Photodamage 78

4.7.1 Carotenoids Serve a Dual Function: Light Harvesting and Photoprotection 78

- 4.7.2 Oxygen May Protect against Photoinhibition by Acting as an Alternative Electron Acceptor 80
- The D1 Repair Cycle Overcomes Photodamage to PSII 82
- 4.8 Inhibitors of Photosynthetic Electron Transport Are Effective Herbicides 83

Summary 86

Chapter Review 86

Further Reading 87

- Box 4.1 Historical Perspective—The Discovery of Photosynthesis 66
- Box 4.2 The Case for Two Photosystems

Chapter 5 • Energy Conservation in Photosynthesis: CO₂ Assimilation 89

- 5.1 Stomatal Complex Controls Leaf Gas Exchange and Water Loss 90
- 5.2 CO₂ Enters the Leaf by Diffusion 92
- 5.3 How Do Stomata Open and Close? 94
- 5.4 Stomatal Movements Are Also Controlled By External Environmental Factors 96
 - 5.4.1 Light and Carbon Dioxide Regulate Stomatal Opening 96
 - 5.4.2 Water Status and Temperature Influence Stomatal Opening 98
 - 5.4.3 Stomatal Movements Follow Endogenous Rhythms
- 5.5 The Photosynthetic Carbon Reduction (PCR) Cycle 98
 - 5.5.1 The PCR Cycle Reduces CO₂ to Produce a 3-Carbon Sugar 98
 - 5.5.2 The Carboxylation Reaction Fixes the CO₂ 99
 - 5.5.3 ATP and NADPH Are Consumed in the PCR Cycle 102
 - 5.5.4 What Are the Energetics of the PCR Cycle? 102
- 5.6 The PCR Cycle Is Highly Regulated 102
 - 5.6.1 The Regeneration of RuBP Is Autocatalytic 102
 - 5.6.2 Rubisco Activity Is Regulated Indirectly by Light
 - 5.6.3 Other PCR Enzymes Are also Regulated by Light

Contents vii

5.7	Chloroplasts of C3 Plants also Exhibit Competing Carbon Oxidation Processes 104		6.8.2 Distribution of Photoassimilates Between Competing Sinks Is Determined By Sink Strength 141
	5.7.1 Rubisco Catalyzes the Fixation of Both CO ₂ and O ₂ 105	6.9	Xenobiotic Agrochemicals Are Translocated in the Phloem 143
	5.7.2 Why Photorespiration? 106 5.7.3 In Addition to PCR, Chloroplasts Exhibit an		Summary 144
	5.7.3 In Addition to PCR, Chloroplasts Exhibit an Oxidative Pentose Phosphate Cycle (OPPC) 108		Chapter Review 144
5.8	The C4 Syndrome: Another Biochemical Mechanism to Assimilate CO ₂ 108		Further Reading 144
5.9	The C4 Syndrome Is Usually Associated with	Char	nton 7 • Collular Domination, Unloaking
	Kranz Leaf Anatomy 112 The C4 Syndrome Has Ecological Significance	Chap	pter 7 • Cellular Respiration: Unlocking the Energy Stored in
	112		Photoassimilates 145
	 5.10.1 The C4 Syndrome Is Differentially Sensitive to Temperature 113 5.10.2 The C4 Syndrome Is Associated with Water Stress 113 	7.1	Cellular Respiration Consists of a Series of Pathways by Which Photoassimilates Are Oxidized 146
5.11	Crassulacean Acid Metabolism (CAM): An	7.2	Sucrose and Starch Are Broken Down into Glucose 147
D.1.1.	Adaptation to Life in the Desert 115		7.2.1 α-Amylase Produces Maltose and Limit Dextrins
	5.11.1 Is CAM a Variation of the C4 Syndrome? 115		148
	5.11.2 CAM Plants Are Particularly Suited to Dry Habitats 115		 7.2.2 β-Amylase Produces Maltose 148 7.2.3 Limit Dextrinase Is a Debranching Enzyme 148
5.12	C4 and CAM Photosynthesis Require Precise		7.2.4 α-Glucosidase Hydrolyzes Maltose 148
	Regulation and Temporal Integration 117		7.2.5 Starch Phosphorylase Catalyzes the
	Summary 121	7.3	Phosphorolytic Degradation of Starch 149 Glycolysis Converts Sugars to Pyruvic Acid 150
	Chapter Review 122	1.5	7.3.1 Hexoses Must Be Phosphorylated to Enter
	Further Reading 122		Glycolysis 150
Box	5.1 • Enzymes 118	7.4	7.3.2 Triose Phosphates Are Oxidized to Pyruvate 151 The Oxidative Pentose Phosphate Pathway Is an Alternative Route for Glucose Metabolism 151
Cha	ntor 6 • Allocation Translocation and	7.5	The Fate of Pyruvate Depends on the Availability
Cna	pter 6 • Allocation, Translocation, and Partitioning of Photoassimilates		of Molecular Oxygen 152
	123	7.6	Oxidative Respiration Is Carried Out by the Mitochondrion 153
6.1	Starch and Sucrose Are Biosynthesized in Two		7.6.1 In the Presence of Molecular Oxygen, Pyruvate Is Completely Oxidized to CO ₂ and Water by the
	Different Compartments 124 6.1.1 Starch Is Biosynthesized in the Stroma 124		Citric Acid Cycle 153
	6.1.2 Sucrose Is Biosynthesized in the Cytosol 125		7.6.2 Electrons Removed from Substrate in the Citric Acid Cycle Are Passed to Molecular Oxygen Through the
6.2	Starch and Sucrose Biosynthesis Are Competitive		Mitochondrial Electron Transport Chain 154
6.2	Processes 126 Photographic Ara Translaceted even Long	7.7	Energy Is Conserved in the Form of ATP in
6.3	Photoassimilates Are Translocated over Long Distances 128	7.8	Accordance with Chemiosmosis 156 Plants Contain Several Alternative Electron
	6.3.1 What Is the Composition of the Photoassimilate	7.0	Pathways 157
6.1	Translocated by the Phloem? 129		7.8.1 Plant Mitochrondria Contain External
6.4	Sieve Elements Are the Principal Cellular Constituents of the Phloem 131		Dehydrogenases 157 7.8.2 Plants Have a Rotenone-Insensitive NADH
	6.4.1 Phloem Exudate Contains a Significant Amount		Dehydrogenase 158
65	of Protein 132 Direction of Translocation Is Determined by	7.0	7.8.3 Plants Exhibit Cyanide-Resistant Respiration 158
6.5	Source-Sink Relationships 133	7.9	Many Seeds Store Carbon as Oils Which Are Converted to Sugar 159
6.6	Phloem Translocation Occurs by Mass Transfer 133	7.10	Respiration Provides Carbon Skeletons for Biosynthesis 161
6.7	Phloem Loading and Unloading Regulate Translocation and Partitioning 136	7.11	Respiration Rate Varies with Development and Metabolic State 162
	6.7.1 Phloem Loading Can Occur Symplastically	7.12	Respiration Rate Responds to Environmental
	or Apoplastically 136 6.7.2 Phloem Unloading May Occur Symplastically		Conditions 163 7.12.1 Light 163
	or Apoplastically 138		7.12.1 Eight 163 7.12.2 Temperature 164
6.8	Photoassimilate Is Distributed Between Different		7.12.3 Oxygen Availability 164
	Metabolic Pathways and Plant Organs 139 6.8.1 Photoassimilates May Be Allocated to a Variety of		Summary 165
	Metabolic Functions in the Source or the Sink		Chapter Review 165
	140		Further Reading 165

viii Contents

Cha	apter 8 • Nitrogen Assimilation 167	9.4 Pr	rimary Productivity on a Global Scale 196	
8.1	The Nitrogen Cycle: A Complex Pattern		Summary 197	
	of Exchange 167		Chapter Review 197 Further Reading 198	
	8.1.1 Ammonification, Nitrification, and Denitrification Are Essential Processes in the Nitrogen Cycle 168		Turiner Reduing 170	
	8.1.2 Nitrogen Fixation Reduces N ₂ to Ammonia 168			
8.2	Biological Nitrogen Fixation Is Exclusively Prokaryotic 169 8.2.1 Some Nitrogen-Fixing Bacteria Are Free-Living	Part 2 • Plants, Water, and Minerals 200 Chapter 10 • Plant Cells and Water 201		
	Organisms 169 8.2.2 Symbiotic Nitrogen Fixation Involves Specific	Спар	ter 10 - Frant Cens and Water 201	
	Associations Between Bacteria and Plants	10.1	Water Has Unique Physical and Chemical Properties 202	
8.3	Legumes Exhibit Symbiotic Nitrogen Fixation 170	10.2	The Thermal Properties of Water Are	
	8.3.1 Rhizobia Infect the Host Roots Which Induces		Biologically Important 203 10.2.1 Water Exhibits a Unique Thermal Capacity 203	
0.1	Nodule Development 170		10.2.1 Water Exhibits a High Heat of Fusion	
8.4	The Biochemistry of Nitrogen Fixation 174		and Heat of Vaporization 203	
	8.4.1 Nitrogen Fixation Is Catalyzed by the Enzyme	10.3	Water Is the Universal Solvent 204	
	Dinitrogenase 174 8.4.2 Nitrogen Fixation Is Energetically Costly	10.4	Polarity of Water Molecules Results in Cohesion and Adhesion 205	
	175	10.5	Water Movement May Be Governed	
	8.4.3 Dinitrogenase Is Sensitive to Oxygen 175	10.5	by Diffusion or by Bulk Flow 205	
	8.4.4 Dinitrogenase Results in the Production of Hydrogen Gas 176		10.5.1 Bulk Flow Is Driven by Hydrostatic Pressure	
8.5	The Genetics of Nitrogen Fixation 177		205 10.5.2 Fick's First Law Describes the Process	
	8.5.1 nif Genes Code for Nitrogenase 177		of Diffusion 206	
	8.5.2 nod Genes and nif Genes Regulate Nodulation 177 8.5.3 What Is the Source of Heme for Leghemoglobin?	10.6	Osmosis Is the Diffusion of Water Across	
	177		a Selectively Permeable Membrane 207 10.6.1 Osmosis in Plant Cells Is Indirectly Energy	
8.6	NH ₃ Produced by Nitrogen Fixation is Converted		Dependent 207	
	to Organic Nitrogen 178 8.6.1 Ammonium Is Assimilated by GS/GOGAT		10.6.2 The Chemical Potential of Water Has an Osmotic as Well as Pressure Component 209	
	178	10.7	Hydrostatic Pressure and Osmotic Pressure Are	
	8.6.2 Fixed Nitrogen Is Exported As Asparagine and		Two Components of Water Potential 210	
87	Ureides 179 Plants Generally Take up Nitrogen in the Form	10.8	Water Potential Is the Sum of Its Component	
0.7	of Nitrate 181	10.9	Potentials 211 Dynamic Flux of H ₂ O Is Associated with	
8.8	Nitrogen Cycling: Simultaneous Import	10.7	Changes in Water Potential 212	
0.0	and Export 182	10.10	How Elastic Are Cell Walls? 213	
8.9	Agricultural and Ecosystem Productivity Is Dependent on Nitrogen Supply 183		Summary 217	
	Summary 184		Chapter Review 217	
	Chapter Review 185		Further Reading 217	
	Further Reading 185	Box :	10.1 • Osmosensors 214	
Во	x 8.1 • Lectins—Proteins with a Sweet Tooth			
	172	Chap	oter 11 • Whole Plant Water Relations	
			219	
Ch	napter 9 • Carbon Assimilation	11.1	Transpiration Is Driven by Differences in Vapor	
	and Productivity 187		Pressure 220	
9.1	Productivity Refers to an Increase in Biomass 187	11.2	Transpiration Can Be Measured by Weight Loss	
9.2	Carbon Economy Is Dependent on the Balance	11.3	and Gas Exchange 221 The Driving Force of Transpiration Is	
0.2	Between Photosynthesis and Respiration 188	22.0	Differences in Vapor Pressure 221	
7.3	Productivity Is Influenced by a Variety of Genetic and Environmental Factors 189	11.4	The Rate of Transpiration Is Influenced by	
	9.3.1 Fluence Rate 189		Environmental Factors 222 11.4.1 What Are the Effects of Humidity? 223	
	9.3.2 Available CO ₂ 190 9.3.3 Temperature 192		11.4.2 What Is the Effect of Temperature? 224	
	9.3.4 Soil Water Potential 193		11.4.3 What Is the Effect of Wind? 224	
	9.3.5 Nutrient Supply, Pathology, and Pollutants 193 9.3.6 Leaf Factors 194	11.5	Water Conduction Occurs via Tracheary Elements 225	
	TOTAL LICENSES LAI			

Contents

11.6	The Ascent of Xylem Sap Is Explained by Combining Transpiration with Cohesive Forces of Water 228 11.6.1 Root Pressure Is Related to Root Structure 229 11.6.2 Water Rise by Capillarity Is Due to Adhesion and Surface Tension 231 11.6.3 The Cohesion Theory Best Explains the Ascent of Xylem Sap 231		12.4.6 12.4.7 12.4.8 12.4.9	Calcium Is Important in Cell Division, Cell Adhesion, and as a Secondary Messenger 251 Magnesium Is a Constituent of the Chlorophyll Molecule and Is an Important Regulator of Enzyme Reaction 251 Iron Is Required for Chlorophyll Synthesis and Electron Transfer Reactions 251 Boron Appears to Have a Role in Cell Division
11.7	Water Loss Due to Transpiration Must Be Replenished 235 11.7.1 Soil Is a Complex Medium 235		12.4.10	and Elongation and Contributes to the Structural Integrity of the Cell Wall 253 Copper Is a Necessary Cofactor for Oxidative
11.8 11.9	Roots Absorb and Transport Water 237 The Permeability of Roots to Water Varies		12.4.11	Enzymes 254 Zinc Is an Activator of Numerous Enzymes 254
11.10	237 Radial Movement of Water Through the Root Involves Two Possible Pathways 238			Manganese Is an Enzyme Cofactor as Well as Part of the Oxygen-Evolving Complex in the Chloroplast 254
	Summary 240 Chapter Review 240			Molybdenum Is a Key Component of Nitrogen Metabolism 254 Chlorine Has a Role in Photosynthetic Oxygen
Box	Further Reading 240 11.1 • Why Transpiration? 226			Evolution and Balances Charge Across Cellular Membranes 255 The Role of Nickel Is Not Clear 255
Pov	11.2 • Forces Involved in Capillary Rise	12.5		ty of Micronutrients 256
DOX.	232			Summary 256
	232			Chapter Review 256
Chap	oter 12 • Plants and Inorganic Nutrients 241			Further Reading 257
		Cha	pter 1	3 • Roots, Soils, and Nutrient
12.1	Methods and Nutrient Solutions 242 12.1.1 Interest in Plant Nutrition Is Rooted in the Study of Agriculture and Crop Productivity 242 12.1.2 The Use of Hydroponic Culture Helped to Define the Mineral Requirements of Plants 242		The So	Uptake 259 bil as a Nutrient Reservoir 260 Colloids Are a Significant Component of Most Soils 260
12.2	12.1.3 Modern Techniques Overcome Inherent Disadvantages of Simple Solution Culture 243		13.1.2	Colloids Present a Large, Negatively Charged Surface Area 260
12.2	The Essential Nutrient Elements 245 12.2.1 Seventeen Elements Are Deemed to Be Essential for Plant Growth and Development 245		13.1.3 13.1.4	Soil Colloids Reversibly Adsorb Cations from the Soil Solution 261 The Anion Exchange Capacity of Soil Colloids
	12.2.2 The Essential Nutrients Are Generally Classed as			Is Relatively Low 261
	either Macronutrients or Micron Nutrients 245 12.2.3 Determining Essentiality of Micronutrients Presents Special Problems 245	13.2		ent Uptake 262 Nutrient Uptake by Plants Requires Transport of
12.3	Beneficial Elements 246 12.3.1 Sodium Is an Essential Micronutrient for C4		13.2.2	the Nutrient across Root Cell Membranes 262 Simple Diffusion Is a Purely Physical Process 262
	Plants 247 12.3.2 Silicon May Be Beneficial for a Variety of Species 247		13.2.3	The Movement of Most Solutes across Membranes Requires the Participation of Specific Transport Proteins 263
	12.3.3 Cobalt Is Required by Nitrogen-Fixing Bacteria 24712.3.4 Some Plants Tolerate High Concentrations of		13.2.4	Active Transport Requires the Expenditure of Metabolic Energy 263
	Selenium 247	13.3	Selecti	ive Accumulation of Ions by Roots 266
12.4	Nutrient Functions and Deficiency Symptoms 247	13.4	266	ochemical Gradients and Ion Movement
			13.4.1	lone Move in Response to Electrochemical
	12.4.1 A Plant's Requirement for a Particular Element Is Defined in Terms of Critical Concentration 248		13.4.2	Ions Move in Response to Electrochemical Gradients 266 The Nernst Equation Helps to Predict Whether
	 12.4.1 A Plant's Requirement for a Particular Element Is Defined in Terms of Critical Concentration 248 12.4.2 Nitrogen Is a Constituent of Many Critical Macromolecules 249 	13.5	13.4.2 Active	Gradients 266 The Nernst Equation Helps to Predict Whether an Ion Is Exchanged Actively or Passively 267
	 12.4.1 A Plant's Requirement for a Particular Element Is Defined in Terms of Critical Concentration 248 12.4.2 Nitrogen Is a Constituent of Many Critical Macromolecules 249 12.4.3 Phosphorous Is Part of the Nucleic Acid Backbone and Has a Central Function in Intermediary Metabolism 249 	13.5	Active 13.5.1	Gradients 266 The Nernst Equation Helps to Predict Whether an Ion Is Exchanged Actively or Passively 267 Transport and Electrogenic Pumps 269 Active Transport Is Driven by ATPase-Proton Pumps 269
	 12.4.1 A Plant's Requirement for a Particular Element Is Defined in Terms of Critical Concentration 248 12.4.2 Nitrogen Is a Constituent of Many Critical Macromolecules 249 12.4.3 Phosphorous Is Part of the Nucleic Acid Backbone and Has a Central Function in 	13.5	Active	Gradients 266 The Nernst Equation Helps to Predict Whether an Ion Is Exchanged Actively or Passively 267 Transport and Electrogenic Pumps 269 Active Transport Is Driven by ATPase-Proton

 \mathbf{X} Contents

13.6 Ion Uptake by Roots 272

13.7	 13.6.1 A First Step in Mineral Uptake by Roots Is Diffusion into the Apparent Free Space 272 13.6.2 Apparent Free Space Is Equivalent to the Apoplast of the Root Epidermal and Cortical Cells 273 The Radial Path of Ion Movement Through Roots 274 13.7.1 Ions Entering the Stele Must First Be Transported from the Apparent Free Space into the Symplast 274 13.7.2 Ions Are Actively Secreted into the Xylem 	14.5.1 Seed Structure and Development 294 14.5.2 Seed Germination 295 14.5.3 Shoot Development 295 14.5.4 Root Development 299 14.5.5 Flower Evocation and Development 301 14.5.6 Flower and Fruit Development 301 14.5.7 Senescence and Programmed Cell Death Are the Final Stages of Development 302 14.6 Kinetic Analysis of Growth 303 14.6.1 Growth of Microorganisms in Culture Exhibit
13.8	Apoplast 274 13.7.3 Emerging Secondary Roots May Contribute to the Uptake of Some Solutes 275 Root-Microbe Interactions 276 13.8.1 Bacteria Other Than Nitrogen Fixers Contribute to Nutrient Uptake by Roots 276 13.8.2 Mycorrhizae Are Fungi that Increase the Volume of the Nutrient Depletion Zone Around Roots 276	Exponential Growth 303 14.6.2 Growth of Multicellular Organisms Is Determined by the Activity of the Meristem 306 Summary 306 Chapter Review 306 Further Reading 306 Box 14.1 • Development in a Mutant Weed 286 Box 14.2 • Ubiquitin and Proteosomes— Cleaning Up Unwanted Proteins 304
Box	Summary 279 Chapter Review 279 Further Reading 280 13.1 • Electrophysiology—Exploring Ion	Chapter 15 • The Plant Hormones: Biochemistry and Metabolism 309
	Channels 264 t 3 • Plant Development 281	 15.1 Do Plants Have Hormones? 309 15.1.1 There Are Subtle Differences Between Animal and Plant Hormones 310 15.1.2 The List of Plant Hormones Is Growing 312
Cha	pter 14 • Patterns in Plant Development 283	15.1.3 The Amount of Hormone in a Tissue Is Governed by Several Factors 312 15.2 Auxin 313
	Growth, Differentiation, and Development 283 14.1.1 Development Is the Sum of Growth and Differentiation 283 14.1.2 Growth Is an Irreversible Increase in Size 284 14.1.3 Differentiation Refers to Qualitative Changes That Normally Accompany Growth 284	 15.2.1 The Principal Auxin in Plants Is Indole-3-Acetic Acid (IAA) 314 15.2.2 IAA Is Synthesized from the Amino Acid L-Tryptophan 316 15.2.3 Some Plants Do Not Require Tryptophan for IAA Biosynthesis 316
	Control of Development 285 14.2.1 The Orderly Development of a Plant Requires a Programmed Sequence of Gene Expression 285 14.2.2 Hormones Coordinate Cell–Cell Interactions 287 14.2.3 A Continuous Stream of Environmental Signals Provide Information That Plants Use to Modify Their Development 287	 15.2.4 IAA May Be Stored As Inactive Conjugates 318 15.2.5 There Are Two Principal Mechanisms for Deactivation of IAA 318 15.3 Gibberellins 320 15.3.1 There Are Three Principal Sites for Gibberellin Biosynthesis 320 15.3.2 Gibberellins Are Terpenes, Sharing a Core Pathway with Several Other Hormones and a
14.3	 Signal Perception and Transduction 287 14.3.1 Signals Are Perceived by Protein Receptors 288 14.3.2 Signal Transduction Includes a Diverse Array of Second Messengers and Biochemical Mechanisms 288 14.3.3 There Is Extensive Cross-Talk among Signal Pathways 291 	Wide Range of Secondary Products 322 15.3.3 Gibberellins Are Synthesized from Geranylgeranyl Pyrophosphate (GGPP) 323 15.3.4 Growth Retardants Block the Synthesis of Gibberellins 324 15.3.5 Gibberellins Are Deactivated by 2β- Hydroxylation 324
14.4	Cell Walls and Cell Growth 291 14.4.1 Cell Growth Is Driven by Water Uptake and Limited by the Strength and Rigidity of the Cell Wall 291 14.4.2 Extension of the Cell Wall Requires Wall-Loosening Events That Enable Load-Bearing Elements in the Wall to Yield to Turgor Pressure 292 14.4.3 Wall Loosening and Cell Expansion Are Stimulated by Low pH and Expansins 293	 15.3.6 Gibberellin Transport Is Poorly Understood 325 15.4 Cytokinins 325 15.4.1 Cytokinins Are Synthesized Primarily in the Root 325 15.4.2 Cytokinin Biosynthesis Begins with the Condensation of an Isopentenyl Group with the Amino Group of Adenosine Monophosphate 326 15.4.3 Cytokinins May Be Reversibly or Irreversibly Deactivated by Conjugation and Irreversibly Deactivated by Oxidation 329

14.5 A Survey of Plant Development 294

Contents xi

15.5. Abscisic Acid 329

- 15.5.1 Abscisic Acid Is Synthesized Primarily in Mature Leaves 330
- 15.5.2 Abscisic Acid Is Synthesized from the Cleavage Product of a 40-Carbon Carotenoid Precursor 330
- 15.5.3 Abscisic Acid Is Degraded by Oxidation to Phaseic Acid 332

15.6 Ethylene 332

- 15.6.1 Ethylene Is Synthesized from the Amino Acid Methionine 332
- 15.6.2 Ethylene and Polyamine Biosynthesis Share a Common Precursor 334
- 15.6.3 Excess Ethylene Is Subject to Oxidation 334

15.7 Brassinosteroids 334

- 15.7.1 Brassinosteroids Are Polyhydroxylated Sterols
 Derived from the Triterpene Squalene 335
- 15.7.2 Several Routes for Deactivation of Brassinosteroids Have Been Identified 335

15.8 Polyamines 335

15.8.1 The Pathway for Polyamine Biosynthesis Is the Same in Plants, Microorganisms, and Mammals 337

Summary 338

Chapter Review 338

Further Reading 339

Box 15.1 • Historical Perspectives—Discovering Plant Hormones 311

Chapter 16 • The Plant Hormones: Control of Development 341

16.1 Cell Division, Enlargement, and Differentiation 341

- 16.1.1 Cytokinins Are a Significant Factor in Regulating Cell Division 341
- 16.1.2 Cytokinins Regulate Progression Through the Cell Cycle 342
- 16.1.3 Auxins Stimulate Cell Enlargement in Excised Tissues 344
- 16.1.4 The Acid-Growth Hypothesis Explains Auxin Control of Cell Enlargement 344
- 16.1.5 Maintenance of Auxin-Induced Growth Requires Gene Activation 347
- 16.1.6 Many Aspects of Plant Development Are Linked to the Polar Transport of Auxin 349
- 16.1.7 Auxins and Cytokinins Regulate Vascular Differentiation 351

16.2 Seed Development and Germination 352

- 16.2.1 The Level and Activities of Various Hormones Change Dramatically During Seed Development 352
- 16.2.2 Gibberellins Stimulate Mobilization of Nutrient Reserves During Germination of Cereal Grains 353

16.3 Shoot and Root Development 356

- 16.3.1 Gibberellins Stimulate Hyperelongation of IntactStems, Especially in Dwarf and Rosette Plants 356
- 16.3.2 Inhibition of Gibberellin Biosynthesis Has Commercial Applications 357
- 16.3.3 Hormone Mutants Indicate a Role for Brassinosteroids and Ethylene in Stem Growth 358

16.3.4 The Ratio of Auxin to Cytokinin Controls the Growth of Axillary Buds 358

16.3.5 Root Elongation and Development Is Particularly Sensitive to Auxin and Ethylene 359

16.4 Senescence and Abscission 360

- 16.4.1 Cytokinins and Ethylene Are Antagonistic in the Regulation of Nutrient Mobilization and Senescence 360
- 16.4.2 Auxin Regulates Leaf Abscission 362

16.5 Flower and Fruit Development 362

- 16.5.1 Gibberellins Promote Precocious Flowering in Some Species 363
- 16.5.2 Auxin and Gibberellin Influence the Sex of Flowers 363
- 16.5.3 Hormones Influence Fruit Set and Development 364

16.6 Ethylene 364

- 16.6.1 The Study of Ethylene Presents a Unique Set of Problems 364
- 16.6.2 Ethylene Affects Many Aspects of Vegetative Development 364

Summary 365

Chapter Review 366

Further Reading 366

Box 16.1 • The Cell Cycle and Control of Cell Division 343

Box 16.2 • Commercial Applications of Hormones 348

Chapter 17 • Photomorphogenesis: Responding to Light 367

17.1 Photomorphogenesis 368

17.2 Phytochrome: Responses to Red and Far-Red Light 368

- 17.2.1 Photoreversibility Is the Hallmark of Phytochrome Action 370
- 17.2.2 Phytochromes Are Phycobilin Pigments 371
- 17.2.3 Conversion of Pr to Pfr in Etiolated Seedlings
 Leads to a Loss of Both Pfr and Total
 Phytochrome 372

17.3 Phytochrome Responses Can Be Grouped According to Their Fluence Requirements 374

- 17.3.1 The Most Studied Low Fluence Responses (LFRs) Are De-etiolation and Seed Germination 374
- 17.3.2 Very Low Fluence Responses Are Not Photoreversible 376
- 17.3.3 High Irradiance Reactions Require Prolonged Exposure to Relatively High Fluence Rates 377

17.4 Phytochrome under Natural Conditions 377

- 17.4.1 PhA May Function to Detect the Presence of Light 378
- 17.4.2 Phytochrome Detects Canopy Shading and End-of-Day Signals 378

17.5 Responses to Blue and UV-A Light 381

- 17.5.1 Cryptochrome Is a Flavoprotein 381
- 17.5.2 Phototropin Is a Blue Light-Dependent Kinase 382
- 17.5.3 A Hybrid Blue-Light Photoreceptor Has Been Isolated from a Fern 382

xii Contents

	De-etiolation in Arabidopsis. A Case Study in Photoreceptor Interactions 383	Chapter 19 • Measuring Time: The Control of Development by Photoperiod
17.7	Photoreceptor Signal Transduction 384 17.7.1 Phytochromes Have Kinase Activity 384	and Endogenous Clocks 415
	 17.7.1 Phytochromes Have Kimase Returny 17.7.2 Pfr Regulates Gene Expression 384 17.7.3 Phytochrome May Migrate from the Cytoplasm to the Nucleus 386 	19.1 Photoperiodism 416 19.1.1 Photoperiodic Responses May Be Characterized By a Variety of Response Types 416
17.8	Some Plant Responses Are Regulated by UV-B Light 387	19.1.2 Critical Daylength Defines Short-Day and Long- Day Responses 417
	Summary 387	19.1.3 Plants Actually Measure the Length of the Dark
	Chapter Review 388	Period 419 19.1.4 The Photoperiodic Signal Is Perceived by the
	Further Reading 388	Leaves 420
Roy	17.1 • Historical Perspectives: The	19.1.5 Phytochrome Is the Principal Photoreceptor for
DOX	Discovery of Phytochrome 369	Photoperiodism 421 19.1.6 Photoperiodism Normally Requires a Period of
	Discovery of Phytoenionic 307	High Fluence Light Before or After the Dark Period 422
Cha	pter 18 • Plant Movements—Orientation in Space 391	19.1.7 Three Different Hypotheses Have Been Proposed to Account for the Floral Stimulus 422
	In Space 371	19.1.8 Photoperiodic Behavior Is Often Modified
18.1	Phototropism 392	by Temperature 423
	18.1.1 Phototropism Is a Response to a Light Gradient	19.2 The Biological Clock 426 19.2.1 Clock-Driven Rhythms Persist under Constant
	across an Organ 392 18.1.2 Phototropism in Coleoptiles Is Mediated by a	Conditions 426
	Flavoprotein 393	19.2.2 The Circadian Clock Is Temperature-
	18.1.3 Fluence Response Curves Illustrate the	Compensated 428
	Complexity of Phototropic Responses 394 18.1.4 The Phototropic Response Is Attributed to a	19.2.3 Light Resets the Biological Clock on a Daily Basis 428
	Lateral Redistribution of Diffusible Auxin 395	19.2.4 The Circadian Clock Is a Significant Component
18.2	Gravitropism 398	in Photoperiodic Time Measurement 429
	18.2.1 Gravitropism Is More Than Simply Up and	19.2.5 Several Clock-Associated Genes Have Been
	Down 398 18.2.2 The Gravitational Stimulus Is the Product of	Identified 431 19.2.6 The Circadian Clock in Insects, Animals, and
	Intensity and Time 399	Cyanobacteria Is a Negative Feedback Loop 432
	18.2.3 In Roots, Gravity Is Perceived in the Root Cap	19.3 Floral Induction 433
	401 18.2.4 The Sedimentation of Starch-Filled Amyloplasts	19.3.1 Flower Initiation and Development Involves the Sequential Action of Three Sets of Genes 433
	Is an Initial Gravity-Sensing Event 402	19.3.2 Flowering Time Genes Influence the Duration of
	18.2.5 Gravitropism, Like Phototropism, Is an Auxin-	Vegetative Growth 434
	Dependent Differential Growth Response 403	19.3.3 Floral Identity Genes and Organ Identity Genes
	18.2.6 The Gravitropic Signal Transduction Chain May Involve Stretch-Activated Ion Channels, pH	Overlap in Time and Function 435 19.4 Photoperiodism in Nature 436
	Changes in the Root Cap, and Redistribution of	Summary 438
	Calcium Ions 405	Chapter Review 438
	18.2.7 Gravitropism in Grass Stems Occurs in the False Pulvinus 407	Further Reading 439
	18.2.8 Plants Follow Different Rules in the Microgravity	
	Environment of Space 408	Box 19.1 • Historical Perspectives: The
18.3	Nastic Movements 408	Discovery of Photoperiodism 416
	18.3.1 Nyctinastic Movements Are Rhythmic Movements Involving Reversible Turgor Changes	Box 19.2 • Historical Perspectives: The
	408	Biological Clock 424
	18.3.2 Nyctinastic Movements Are Due to Ion Fluxes	
	and Resulting Osmotic Responses in Specialized Motor Cells 409	Chapter 20 • Temperature: Plant
	18.3.3 Seismonasty Is a Response to Mechanical	Development and Distribution
	Stimulation 412	441
	Summary 413	20.1 Temperature in the Plant Environment 441
	Chapter Review 414	20.2 Temperature and Flowering Response 443
	Further Reading 414	20.2.1 Vernalization Occurs Most Commonly in Winter
Ros	18.1 • Methods in the Study of Gravitropism	Annuals and Biennials 443
DO3	400	20.2.2 The Effective Temperature for Vernalization Is Variable 444

Contents

	20.2.3 The Vernalization Treatment Is Perceived by the Shoot Apex 445		Insects and Disease Represent Potential Biotic Stresses 479
	20.2.4 The Vernalized State Is Transmissible 445 20.2.5 Gibberellin and Vernalization Operate Through		21.7.1 Hypersensitive Reaction Is a Sensing/Signalling Mechanism Initiated by a Biotic Stress 479 21.7.2 How Do Plants Research Potential Pathography
20.2	Independent Genetic Pathways 446		21.7.2 How Do Plants Recognize Potential Pathogens and Initiate Defense Responses? 479
20.3	Bud Dormancy 446 20.3.1 Bud Dormancy Is Induced Primarily by Photoperiod 447		21.7.3 Systemic Acquired Resistance Represents a Plant Immune Response 480
	20.3.2 Temperature Is a Significant Factor in Breaking Bud Dormancy 447		21.7.4 Jasmonates Mediate Insect and Disease Resistance 481
20.4	Seed Dormancy and Germination 448		Summary 490
	20.4.1 Numerous Factors Influence Seed Dormancy and		Chapter Review 491
	Germination 448 20.4.2 Temperature Hes a Significant Impact on Seed		Further Reading 491
	20.4.2 Temperature Has a Significant Impact on Seed Dormancy 449	Doy '	21.1 . Manitaring Dlant Studen by
20.5	Responses to Change in Temperature 450	BOX .	21.1 • Monitoring Plant Stress by
	Influence of Temperature on Growth		Chlorophyll Fluorescence 482
20.0	and Plant Distribution 451	Box :	21.2 • Ecophysiology, Plant Biomes, and
	20.6.1 Coasts and Deserts: A Case Study 452		Weather 484
	20.6.2 Temperature Influences the Distribution of C3		
	and C4 Grasses on Mountain Slopes 454	Char	oter 22 • Secondary Plant Metabolites 493
	Summary 454	Chap	oter 22 - Secondary Frant Metabolites 473
	Chapter Review 455	22.1	Primary and Secondary Metabolites 493
	Further Reading 455	22.2	Terpenoids 494
			22.2.1 The Terpenoids Are a Chemically and
$\overline{p_{av}}$	t 4 • Stress and Secondary Metabolism 457		Functionally Diverse Group of Molecules That Share a Common Biosynthetic Pathway 494
Lui	t 1 - Stress and Secondary Prictabolism 197		22.2.2 Many Terpenoids Are Active against Insect
Cha	pter 21 • Plant Environmental Stress		Herbivory 495
	Physiology 459		22.2.3 Steroids and Sterols Are Tetracyclic
21.1	What Is Plant Stress? 459		Triterpenoids 497
	Plants Respond to Stress in Several Different		22.2.4 Polyterpenes Include the Carotenoid Pigments and Natural Rubber 497
21.2	Ways 460	22.3	Glycosides 499
21.3	Abiotic Stress 461	44.5	22.3.1 Saponins Are Terpene Glycosides with Detergent
	21.3.1 Water Stress Is a Persistent Threat to Plant		Properties 499
	Survival 461		22.3.2 Cardian Glycosides Are Highly Toxic, Modified
	21.3.2 Water Stress Leads to Membrane Damage 462 21.3.3 Photosynthesis Is Particularly Sensitive to Water		Steroid Glycosides 500 22.3.3 Cyanogenic Glycosides Are a Natural Source of
	Stress 462		Hydrogen Cyanide 501
	21.3.4 Stomata Respond to Water Deficit 463		22.3.4 Glucosinolates Are Sulfur-Containing Precursors
	21.3.5 Osmotic Adjustment Is a Response to Water		to Mustard Oils 502
	Stress 465	22.4	Phenylpropenoids 503
	21.3.6 Water Deficit Affects Shoot and Root Growth 466		22.4.1 Shikimic Acid Is a Key Intermediate in the
	21.3.7 Water Stress May Induce a Decrease in Leaf Area		Synthesis of Aromatic Amino Acids and Phenylpropenoids 503
	467		22.4.2 The Simplest Phenolic Molecules Are Essentially
21.4	Temperature Stress 467		Deaminated Versions of the Corresponding
	21.4.1 Many Plants Are Chilling Sensitive 468		Amino Acids 503
	21.4.2 North Temperate Overwintering Plants Survive Freezing Stress 468		22.4.3 Coumarins and Coumarin Derivatives Function as
	21.4.3 Cold Acclimation Increases Resistance to		Anticoagulants 506 22.4.4 Lignin Is a Major Structural Component
	Freezing Stress 470		of Secondary Cell Walls 507
	21.4.4 Cold Acclimation and Freezing Tolerance in		22.4.5 Flavonoids and Stilbenes Have Parallel
	Herbaceous Species Is a Complex Interaction Between Light and Low Temperature 471		Biosynthetic Pathways 508
	21.4.5 High Temperature Stress Is a Major Factor in		22.4.6 Tannins Denature Proteins and Provide an Astringent Taste to Foods 508
	Plant Productivity 472	22.5	Alkaloids 510
21.5	Salt Stress, Water Deficits and Ion Toxicity 474	44.3	22.5.1 Alkaloids Are a Large Family of Chemically
	Pollution Represents a Relatively New Abiotic		Unrelated Molecules 510
	Stress 476		22.5.2 Alkaloids Are Noted Primarily for Their
	21.6.1 Heavy Metals 476		Pharmacological Properties and Medical Applications 510

xiv

22.5.3 Like Many Other Secondary Metabolites,
 Alkaloids Serve as Preformed Chemical Defense
 Molecules 512
 Summary 513
 Chapter Review 513
 Further Reading 513

Part 5 • Biotechnology 515

Chapter 23 • Biotechnology: Engineering Plants for the Future 517

23.1 Modern Biotechnology Is Synonymous with Recombinant DNA Technology 518

23.1.1 DNA Recombination Allows the Movement of Selected Genes Between Organisms 518

23.1.2 The Most Widely Used Vector for Introducing
Foreign Genes into Plants is the Ti Plasmid of the
Crown-Gall Bacterium Agrobacterium Tumefaciens
519

23.1.3 Electroporation and Biolistics Are Methods for Direct Delivery of DNA into Plant Cells 522

23.1.4 Genetic Engineering Is a New Chapter in the Long History of Plant Breeding 522

23.2 Tissue and Cell Culture and Protoplast Fusion 523

23.2.1 The Culture of Plant Cells and Tissues Has Been Exploited Since the 1930s 523

23.2.2 Protoplasts Are Naked Plant Cells That Can Be Fused to Make Somatic Hybrids 523

23.2.3 Tissue Culture Has Made Possible Large-Scale Cloning of Plants 524

23.3 Plant Protection 524

23.3.1 Herbicide-Resistant Crops Encourage More Efficient Use of Herbicides 525

23.3.2 Herbicide Resistance Can Be Achieved by Overexpression of Tolerant Enzymes 525 23.3.3 Herbicide Resistance in Weeds Is a PotentiallyUndesirable Side-Effect of Herbicide Use 526

23.3.4 Several Strategies Are Available for Protection against Insects and Disease 527

23.4 Metabolic Engineering: Improving Yield and Nutrition 528

23.4.1 One Target of Biotechnology Is Improved Carbon Gain and Nitrogen Metabolism 528

23.4.2 Boosting Vitamin Content Is One Way to Improve the Nutritional Quality of Foods 529

23.4.3 Oilseed Crops May Be Engineered to Produce Healthier Edible Oils 529

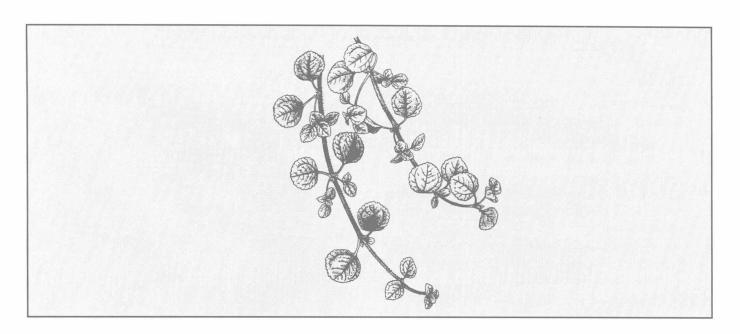
23.5 Molecular Farming Uses Plants as Living Factories 530

23.5.1 Transgenic Plants May Provide a Low-Cost Delivery System for Vaccines 531

23.5.2 Plants Can Be Engineered to Produce Biodegradable Plastics 531

23.6 Plants Have Potential as an Alternative Source of Renewable Fuels 532

23.7 Plants Remain Useful as a Source of Secondary Products 533


Summary 533 Chapter Review 534 Further Reading 534

Box 23.1 • Engineering Plants with Their Own Genes 519

Appendix I • Standard Amino Acids and Their Structures 535

Appendix II • Measuring Water Potential and Its Components 539

Index 545

1

Cells, Tissues, and Organs: The Architecture of Plants

The term **physiology** is constructed from the Greek words physis, meaning nature, and logos, meaning discourse. Taken literally, then, plant physiology is a discourse about the nature of plants. This is a rather broad mandate, encompassing virtually everything within the realm of botany. For good reason, plant physiologists have traditionally taken a more limited, more mechanistic approach to the study of plants. From the physiological perspective, plants are viewed primarily as biochemical machines; machines that take in simple inorganic molecules and energy from their surrounding environment and use them to assemble complex chemical structures. The processes that enable plants to carry out these activities are themselves the sum of a multitude of coordinated chemical reactions. Ultimately, everything that plants are and everything that they do are based on chemical and physical processes.

Plant physiology is about how plants use the energy of the sun to assimilate carbon, and how they convert that carbon to the stuff of which they are made. It is about how plants obtain and distribute nutrients and water, how they grow and develop, how they respond to their environment, how they react to stress, and how they reproduce. In short, plant physiology is about how plants work. To this end, plant physiologists apply the tools of chemistry, biochemistry, physics, molecular biology, genetics, and a variety of other subdisciplines of

science in order to explain plant functions in terms of known chemical, physical, and biological laws.

How plants work, however, cannot be separated from the way plants are built. In biology, form and function are inseparable. For example, the anatomy and morphology of stems and leaves closely reflect their respective functions of support and transport, on the one hand, or photosynthesis on the other hand. This means that in order to understand the physiology of plants, it is also necessary to have some understanding of plant structure and to be conversant with some of the terminology involved.

As with all living organisms, the smallest functional unit of a plant is the cell. Indeed, the study of plant physiology is very much a study of the physiology of plant cells and how their coordinated activities are reflected in the physiology of the whole organism. In a similar fashion, the morphology, or form, of a plant reflects the number, morphology, and arrangement of its individual cells. Cells, in turn, are an assembly of a vast number and array of biochemicals, many of which are indispensable building blocks used in the structure of cells.

The purpose of this chapter is to introduce the essential features of plant cell structure, beginning with the primary biochemical building blocks, and show how cells are organized into the principal tissue systems and organs of plants.

This introduction and review will include

- in general terms, the essential structures of the biochemical building blocks of cells—lipids, proteins, and carbohydrates;
- the composition and structure of biological membranes;
- the general characteristics of cellular organelles that serve to compartmentalize metabolic activities within the cell;
- the cytoskeleton—a fibrous protein network that provides a framework for cellular organization and controls cellular dynamics;
- the composition and structure of cell walls; and
- the major tissue and organ systems of flowering plants.

1.1 THE PLANT CELL

Although plants, like all multicellular organisms, exhibit a wide variation in cellular morphology and function, these disparate cells are, in fact, remarkably alike. All cells are built according to a common basic plan and at least start out with the same fundamental structures. In its simplest form, a cell is an aqueous solution of chemicals called protoplasm surrounded by a plasma membrane. The membrane and the protoplasm it contains are collectively referred to as a protoplast. Of course, all of the components that make up protoplasm have important roles to play in the life of a cell, but the plasma membrane is particularly significant because it represents the boundary between the living and nonliving worlds. The plasma membrane is also selectively permeable, which means that it allows some materials to pass through but not others. The plasma membrane thus not only physically defines the limits of a cell, it also controls the exchange of material and serves to maintain essential differences between the cell and its environment. The plant protoplast is, in turn, surrounded by a cell wall. The cell wall defines the shape of the cell and, through adhesion to the walls of adjacent cells, provides support for the plant as a whole.

In an electron micrograph (an image seen through the electron microscope), membranes are a singularly prominent feature (Figs. 1.1, 1.2). In addition to the plasma membrane, other membranes are found throughout the protoplast where they form a variety of subcellular structures called **organelles** ("little organs"). Organelles serve to compartmentalize major metabolic activities within the cell, much in the same way that an automobile factory is set up for metal fabrication, paint shop, assembly line, and so forth. One of these organelles, the **nucleus**, contains the genetic information and is the control center of the cell. The nucleus and its

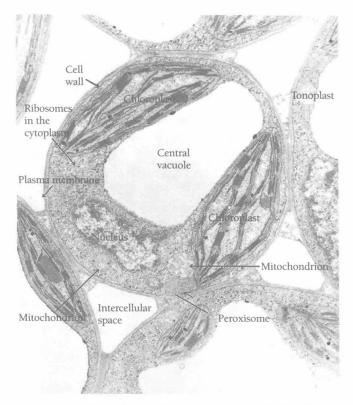


FIGURE 1.1 The plant cell. A mature mesophyll cell from a *Coleus* leaf, as seen in the electron microscope. Note the prominent large central vacuole and chloroplasts. (Electron micrograph by Wm. P. Wergin, courtesy of E. H. Newcomb, University of Wisconsin–Madison.)

contents are known as **nucleoplasm**. The balance of the protoplasm, excluding the nucleus but including other organelles, is called **cytoplasm**. Different organelles in the cytoplasm contain the enzymes and other machinery for cellular respiration, photosynthesis, protein synthesis, secretion, and so forth. The remaining portion of the cytoplasm, not including membrane-bound organelles, is referred to as the **cytosol**. The cytosol may comprise as much as half the cytoplasm in the cell and is the principal site of protein synthesis and much of the **intermediary metabolism**—the complex series of reactions by which small molecules are degraded and reassembled to provide precursors for the larger building blocks of the cell.

1.2 BUILDING BLOCKS: LIPIDS, PROTEINS, AND CARBOHYDRATES

Green plants, along with a few bacteria, stand alone in the world in their ability to use the energy of the sun to synthesize simple sugars from carbon dioxide and water. Through subsequent metabolic conversions, the glucose is converted to other small organic molecules, such