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Preface to the First Edition

The present book is based on lectures given by the author at the
University of Tokyo during the past ten years. It is intended as a
textbook to be studied by students on their own or to be used in a course
on Functional Analysis, i.e., the general theory of linear operators in
function spaces together with salient features of its application to
diverse fields of modern and classical analysis.

Necessary prerequisites for the reading of this book are summarized,
with or without proof, in Chapter 0 under titles: Set Theory, Topo-
logical Spaces, Measure Spaces and Linear Spaces. Then, starting with
the chapter on Semi-norms, a general theory of Banach and Hilbert
spaces is presented in connection with the theory of generalized functions
of S. L. SoBoLEV and L. ScuwaRTz. While the book is primarily addressed
to graduate students, it is hoped it might prove useful to research mathe-
maticians, both pure and applied. The reader may pass, e.g., from
Chapter IX (Analytical Theory of Semi-groups) directly to Chapter XIII
(Ergodic Theory and Diffusion Theory) and to Chapter XIV (Integration
of the Equation of Evolution). Such materials as ‘“Weak Topologies
and Duality in Locally Convex Spaces’” and ‘‘Nuclear Spaces’ are
presented in the form of the appendices to Chapter V and Chapter X,
respectively. These might be skipped for the first reading by those who
are interested rather in the application of linear operators.

In the preparation of the present book, the author has received
valuable advice and criticism from many friends. Especially, Mrs.
K. HiLLE has kindly read through the manuscript as well as the galley
and page proofs. Without her painstaking help, this book could not
have been printed in the present style in the language which was
not spoken to the author in the cradle. The author owes very much
to his old friends, Professor E. HILLE and Professor S. KAKUTANI of
Yale University and Professor R. S. PHILLIPS of Stanford University for
the chance to stay in their universities in 1962, which enabled him to
polish the greater part of the manuscript of this book, availing himself
of their valuable advice. Professor S. ITo and Dr. H. KoMATsu of the
University of Tokyo kindly assisted the author in reading various parts



Preface

of the galley proof, correcting errors and improving the presentation.
To all of them, the author expresses his warmest gratitude.

Thanks are also due to Professor F. K. ScumIDT of Heidelberg Uni-
versity and to Professor T. KATo of the University of California at
Berkeley who constantly encouraged the author to write up the present
book. Finally, the author wishes to express his appreciation to Springer-
Verlag for their most efficient handling of the publication of this book.

Tokyo, September 1964

Ko0saku Yosipa

Preface to the Second Edition

In the preparation of this edition, the author is indebted to
Mr. FLORET of Heidelberg who kindly did the task of enlarging the Index
to make the book more useful. The errors in the second printing are cor-
rected thanks to the remarks of many friends. In order to make the book
more up-to-date, Section 4 of Chapter XIV has been rewritten entirely
for this new edition.

Tokyo, September 1967

Ko6saku Yosipa

Preface to the Third Editipn

A new Section (9. Abstract Potential Operators and Semi-groups)
pertaining to G. HUNT's theory of potentials is inserted in Chapter XIII
of this edition. The errors in the second edition are corrected thanks to
kind remarks of many friends, especially of Mr. KLAUS-DIETER BIER-

STEDT.
Kyoto, April 1971
Kb6saku YOSIDA

Preface to the Fourth Edition

Two new Sections ““6. Non-linear Evolution Equations 1 (The
Komura-Kato Approach)” and “7. Non-linear Evolution Equations 2
(The Approach Through The Crandall-Liggett Convergence Theorem)”
are added to the last Chapter XIV of this edition. The author is grateful
to Professor Y. KOmura for his careful reading of the manuscript.

Tokyo, April 1974
Ko6saku Yosipa



Preface to the Fifth Edition

Taking advantage of this opportunity, supplementary notes are added
at the end of this new edition and additional references to books have
been entered in the bibliography. The notes are divided into two cate-
gories. The first category comprises two topics: the one is concerned with
the time reversibility of Markov processes with invariant measures, and
the other is concerned with the uniqueness of the solution of time depen-
dent linear evolution equations. The second category comprises those
lists of recently published books dealing respectively with Sobolev Spaces,
Trace Operators or Generalized Boundary Values, Distributions and
Hyperfunctions, Contraction Operators in Hilbert Spaces, Choquet’s
Refinement of the Krein-Milman Theorem and Linear as well as Non-
linear Evolution Equations.

A number of minor errors and a serious one on page 459 in the fourth
edition have been corrected. The author wishes to thank many friends
who kindly brought these errors to his attention.

Kamakura, August 1977 Ko6saku YosIDA

Preface to the Sixth Edition

Two major changes are made to this edition. The first is the re-
writing of the Chapter VI, 6 to give a simplified presentation of Miku-
sinski’s Operational Calculus in such a way that this presentation does
not appeal to Titchmarsh’s theorem. The second is the rewriting of the
Lemma together with its Proof in the Chapter XII,5 concerning the
Representation of Vector Lattices. This rewriting is motivated by a
letter of Professor E. Coimbra of Universidad Nova de Lisboa kindly
suggesting the author’s careless phrasing in the above Lemma of the
preceding edition.

A number of misprints in the fifth edition have been corrected thanks
to kind remarks of many friends.

Kamakura, June 1980 Kosaku Yosipa
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0. Preliminaries

It is the purpose of this chapter to explain certain notions and theo-
rems used throughout the present book. These are related to Set Theory,
Topological Spaces, Measure Spaces and Linear Spaces.

1. Set Theory

Sets. x € X means that x is a member or element of the set X; x€ X
means that x is not a member of the set X. We denote the set con-
sisting of all x possessing the property P by {x; P}. Thus {y; y = %} is
the set {x} consisting of a single element x. The void set is the set with
no members, and will be denoted by @. If every element of a set X is also
an element of a set:Y, then X is said to be a subset of Y and this fact
will be denoted by X C Y, or Y 2 X. If X is a set whose elements are
sets X, then the set of all x such that x € X for some X € ¥ is called the
union of sets X in X; this union will be denoted by x%’z X. The inter-

section of the sets X in X is the set of all x which are elements of every
X € X; this intersection will be denoted by x@; X. Two sets are dis-

joint if their intersection is void. A family of sets is disjoint if every
pair of distinct sets in the family is disjoint. If a sequence {X,},_;0
(o]

of sets is a disjoint family, then the union U1 X, may be written in
fn=

o0
the form of a sum )_‘,1X,..

Mappings. The term mapping, function and transformation will be
used synonymously. The symbol f: X — Y will mean that f is a single-
valued function whose domain is X and whose range is contained in Y;
for every x € X, the function f assigns a uniquely determined element
f(®) =y€Y. For two mappings f/: X — Y and g: Y —> Z, we can
define their composite mapping gf: X — Z by (gf) (x) = g(f(x)). The
symbol /(M) denotes the set {f(x); x € M} and /(M) is called the image
of M under the mapping /. The symbol /! (N) denotes the set {x; f(x)€ N}
and f1(N) is called the inverse image of N under the mapping f. It is
clear that

Y, = f(f(Y,)) for all Y, C f(X), and X, C /71(f(X,)) for all X, C X.
1 Yosida, Functional Analysis
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If f: X - Y, and for each y € f(X) there is only one x € X with f(x) = y,
then fis said to have an inverse (mapping) or to be one-fo-one. The inverse
mapping then has the domain 7(X) and range X; it is defined by the
equation x = f1(y) = /7 ({}).

The domain and the range of a mapping f will be denoted by D (f) and
R (f), respectively. Thus, if f has an inverse then

2 (f(x)) = x for all x€ D(f), and f(f1(y)) = y for all y € R(f).

The function fis said tomap X onto Y if f(X) = Yandinto Yif f(X)CY.
The function fis said to be an extension of the function g and g a restriction
of fif D(f) contains D (g), and /(x) = g(x) for all x in D (g).

Zorn’s Lemma

Definition. Let P be a set of elements a, b, ... Suppose there is a
binary relation defined between certain pairs (a, ) of elements of P,
expressed by a < b, with the properties:

a<a,
ifa < band b < a, thena =25,
if a < band b < ¢, then a < ¢ (transitivity).

Then P is said to be partially ordered (or semi-ordered) by the relation <(.

Examples. If P is the set of all subsets of a given set X, then the set
inclusion relation (4 C B) gives a partial ordering of P. The set of all
complex numbers z = x + ¢y, w = u + tv, ... is partially ordered by
defining z < w to mean x < v and y < v.

Definition. Let P be a partially ordered set with elements a, b, . . .
If a < ¢ and b < ¢, we call ¢ an upper bound for a and b. If furthermore
¢ < d whenever 4 is an upper bound for a and b, we call ¢ the least upper
bound or the supremum of a and b, and write ¢ = sup(a, b) ora \/ b.
This element of P is unique if it exists. In a similar way we define the
greatest lower bound or the infimum of a and b, and denote it by inf(a, )
ora /A b. If a\/Vband a A b exist for every pair (a, d) in a partially
ordered set P, P is called a lattice.

Example. The totality of subsets M of a fixed set B is a lattice by
the partial ordering M; < M, defined by the set inclusion relation
M, C M,.

Definition. A partially ordered set P is said to be linearly ordered (or
totally ordered) if for every pair (a, b) in P, either a < b or b < a holds.
A subset of a partially ordered set is itself partially ordered by the rela-
tion which partially orders P; the subset might turn out to be linearly
ordered by this relation. If P is partially ordered and S is a subset of P,
an m € P is called an upper bound of S if s < m for every s€ S. An
m € P is said to be maximal if p € P and m < p together imply m = p.
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Zorn’s Lemma. Let P be a non-empty partially ordered set with the
property that every linearly ordered subset of P has an upper bound
in P. Then P contains at least one maximal element.

It is known that Zorn’s lemma is equivalent to Zermelo’s axiom of
choice in set theory.

2. Topological Spaces

Open Sets and Closed Sets

Definition. A system 7 of subsets of a set X defines a fopology in X
if T contains the void set, the set X itself, the union of every one of its
subsystems, and the intersection of every one of its finite subsystems.
The sets in 7 are called the open sets of the topological space (X, 1); we
shall often omit 7 and refer to X as a topological space. Unless otherwise
stated, we shall assume that a topological space X satisfies Hausdorff's
axiom of separation:

For every pair (x,, %,) of distinct points x;, x, of X, there exist disjoint

open sets G;, G, such that x, € G,, x, € G,.

A neighbourhood of the point x of X is a set containing an open set which
contains x. A neighbourhood of the subset M of X is a set which is a
neighbourhood of every point of M. A point x of X is an accumulation
point or limit point of a subset M of X if every neighbourhood of x con-
tains at least one point m € M different from x.

Definition. Any subset M of a topological space X becomes a topolo-
gical space by calling “open’’ the subsets of M which are of the form
M N G where G's are open sets of X. The induced topology of M is called
the relative topology of M as a subset of the topological space X.

Definition. A set M of a topological space X is closed if it contains
all its accumulation points. It is easy to see that M is closed iff! its
complement M® = X — M is open. Here A — B denotes the totality of
points x € A not contained in B. If M C X, the intersection of all closed
subsets of X which contain M is called the closure of M and will be denoted
by M* (the superscript “a” stands for the first letter of the German:
abgeschlossene Hiille).

Clearly M*® is closed and M C M?; it is easy to see that M = M* iff
M is closed.

Metric Spaces

- Definition. If X, Y are sets, we denote by X X Y the set of all ordered
pairs (x,y) where x€ X and y€ Y; X XY will be called the Cartesian
product of X and Y. X is called a metric space if there is defined a func-

1 iff is the abbreviation for “‘if and only if”’.
1‘
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tion 4 with domain X X X and range in the real number field R! such
that

d(xy, %y) = d (x4, %),

d(xy, %3) =< d(x,, %3) + d(x,, %3) (the triangle inequality).
d is called the metric or the distance function of X. With each point x,
in a metric space X and each positive number », we associate the set
S(xg:r) ={x€ X;d(x, %) < r} and call it the open sphere with centre x,
and radius 7. Let us call “‘open” the set M of a metric space X iff, for
every point x, € M, M contains a sphere with centre x,. Then the totality
of such “open”’ sets satisfies the axiom of open sets in the definition of the
topological space.

Hence a metric space X is a topological space. It is easy to see thata
point x, of X is an accumulation point of M iff, to every ¢ > 0, there exists
at least one point m 5% x, of M such that d(m, x,) < &. The n-dimensional
Euclidean space R" is a metric space by

{d(xl, %) = 0 and d(x,, %)) = 0iff x, = x,,

» 1/2
d(x,y) =<’_£ (% — y‘)’) ; where &= (%7, ..., %) and y=(9;, .. ., ¥a)-
Continuous Mappings

Definition. Let /: X — Y be a mapping defined on a topological
space X into a topological space Y. fis called cantinuous at a point xy€ X
if to every neighbourhood U of f(x,) there corresponds a neighbourhood
V of %, such that f(V) C U. The mapping / is said to be continuous if it is
continuous at every point of its domain D (f) = X

Theorem. Let X, Y be topological spaces and  a mapping defined
on X into Y. Then f is continuous iff the inverse image under f of every
open set of Y is an open set of X.

Proof. If f is continuous and U an open set of Y, then V = f1(U)
is a neighbourhood of every point x,€ X such that f(x,) € U, that is,
V is a neighbourhood of every point x, of V. Thus ¥V is an open set of X.
Let, conversely, for every open set U 3 f(x,) of Y, the set V = f1(U)
be an open set of X. Then, by the definition, fis continuous at x,€ X.

Compactness

Definition. A system of sets G,, « € 4, is called a covering of the set
X if X is contained as a subset of the union U,¢, G,. A subset M of a
topological space X is called compact if every system of open sets of X
which covers M contains a finite subsystem also covering M.

In view of the preceding theorem, a continuous image of a compact set
s also compact.

Proposition 1. Compact subsets of a topological space are necessarily
closed.
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Proof. Let there be an accumulation point x, of a compact set M of a
topological space X such that x,€ M. By Hausdorff’s axiom of separa-
tion, there exist, for any point m € M, disjoint open sets G, ,, and G,, .,
of X such that m€ G,,,,, %€ G, m The system {G,, . ; m € M} surely
covers M. By the compactness of M, there exists a finite subsystem

”

{Gms; 1=1,2,...,n} which covers M. Then .nl G,,m; does not
i

intersect M. But, since x, is an accumulation point of M, the open set

”
.'91 G,,m D%, must contain a point m ¢ M distinct from x,. This is a
contradiction, and M must be closed.

Proposition 2. A closed subset M, of a compact set M of a topologlcal
space X is compact.

Proof. Let {G,} be any system of open sets of X which covers M,.
M, being closed, M{ = X — M, is an open set of X. Since M, C M
the system of open sets {G,} plus M ¢ covers M, and since M is compact, a
properly chosen finite subsystem {Ga‘.; t=1,2,...,n} plus M surely
covers M. Thus {G,,; + =1, 2, ..., n} covers M,.

Definition. A subset of a topological space is called relatively compact
if its closure is compact. A topological space is said to be locally compact if
each point of the space has a compact neighbourhood.

Theorem. Any locally compact space X can be embedded in another
compact space Y, having just one more point than X, in such a way that
the relative topology of X as a subset of Y is just the original topology
of X. This Y is called a one point compactification of X.

Proof. Let y be any element distinct from the points of X. Let {U} be
the class of all open sets in X such that U® = X — U is compact. We
remark that X itself € {U}. Let Y be the set consisting of the points of X
and the point y. A set in Y will be called open if either (i) it does not
contain y and is open as a subset of X, or (ii) it does contain y and its
intersection with X is a member of {U}. It is easy to see that Y thus
obtained is a topological space, and that the relative topology of X
coincides with its original topology.

Suppose {V} be a family of open sets which covers Y. Then there must
be some member of {V'} of the form U, \V {y}, where U,€ {U}. By the
definition of {U}, U is compact as a subset of X. It is covered by the
system of sets ¥/ X with V€ {V}. Thus some finite subsystem:
VWNX,V,NX,...,V,N X covers U§. Consequently, V,, V,, ..., V,
and U, \V {y} cover Y, proving that Y is compact.

Tychonov’s Theorem

Definition. Corresponding to each x of anindex set 4,let there be given
a topological space X,. The Cartesian product g X, is, by defini-



