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Abstract

Within the last thirty years, concurrent with the growth
of computer science, graph theory has seen explosive growth.
Perhapes the fastest growing area within graph theory is the
study of domination in graphs. The rapid growth in the
number of domination papers is attributable largely to three
factors: (1) the diversity of applications to both real-world
and other mathematical ‘covering”’ or °facility location’
problems, such as coding theory, computer communication
networks, monitor system, landing surveying and social network
theory. (2) the wide variety of domination parameters that
can be defined, about 40 — 50 different types of domination
have been defined. (3) the NP-completeness of the basic
domination problem, its close and ‘natural’ relationships to
other NP-complete problems, and the subsequent interest in
finding polynomial time solutions to domination problems in
special classes of graphs.

In this paper, we pay our attention mainly on the
following four parts of domination in graphs:

e Determining the bounds on several domination parameters
and investigating the relationship between the domination
parameters and other graphical parameters.

e Characterizing the extremal graphs for inequalities

-
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involving in domination parameters.

® Determining the bounds on dominating functions in
graphs.

® Discussing some problems on centrum and balance
vertices in graphs.

In Chapter 2, we investigate the bounds on classical
domination and characterize some extremal graphs for
inequalities involving in domination parameters.

In 1993, Reed in [70] proved that every graph of order
n with minimum degree at least three has a dominating set of

at most 32 vertices. In Section 2.2, by modifying Reed’s

8
“disjoint path covering” method, we improve Reed’s result to
Y(G) <3n_+|_Vz_l » where V7 is the vertex set of degree 2, if

8
G is a graph on n vertices with 6 (G) == 2. As an application
of above result, we obtain an upper bound rx (G, 7) <

8 F ok + 3
8

with order n and minimum degree at least three. It is well-
known that 7(G) << B(G) << a(G) holds for any connected
graph G. In Section 2. 3, we give a complete characterization
of those graphs G for which ¥(G) = B(G) and 6(G) = 2.
Furthermore, we investigate some special types of graphs G
for which ¥(G) = B(G).

Although [ 78] shows that the parameters # and 7, are
not comparable for graphs with minimum degree at most 2,

on k-restricted domination number of a graph G

s
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yet it is likely to compare 8 with 7, for graphs with large
minimum degree. In Section 2.4, we obtain that if G is claw-
free graph and 6(G) >4, then 7, (G) << B(G). This implies
that Favaron’s conjecture is true for claw-free graphs with
0(G) >=4. We believe that the result is true for any claw-free
graph with minimum degree 3, although we were not able to
settle it. If it is true, an example is given to illustrates the
tight inequality.

In the end of Chapter 2, we establish the Nordhaus-
Gaddum inequalities on k-domination number of graphs,
which strengthens the conjecture on double domination
number of graphs proposed by Harary and Haynes [ 29 ]
in 1996. |

In Chapter 3, we investigate the paired-domination
number in graphs, which was introduced by Haynes and
Slater in [40] in 1998.

Haynes and Slater in [ 40 ] showed that the problem of
determining the paired-domination number ¥p (G ) of an
arbitrary graph is NP-complete, and for any connected graph
G with order n==6 and 0 (G) =2 they presented an upper
bound 2n/3 of ¥, (G) in terms of order of a graph.
However, the authors only give an example Cs to see that the
above bound is sharp, and give a family of graphs for which
Yp(G) approach 2n/3 for large n. In Section 3.1, we will
give a complete characterization of graphs for which ¥, (G) =
2n/3.

In Section 3. 2, we provide a constructive characterization

==



2005 £F E g K
W |

of those trees with equal total domination and paired-
domination numbers.

In Section 3. 3, we investigate the relationship between
the paired-domination number ¥, (G) of a graph and the
coloring number of its complement. We show that 7, (G) <C
X(G¢) + 1 for any connected graph G whose complement is
K3, 3-free, except for several families of graphs.

In Chapter 4, we discuss the domination functions in
graphs, and obtain the following results.

In 1999, Dunbar et al. in [ 18] introduced the concept of
minus domination and posed conjectured that for any bipartite
graph G with order n, the minus domination number ¥~ (G) =

46/n+1 - 1) — n. In Section 4. 2, we prove that the
conjecture is true and establish another attained lower bound

E _ (|E@®)] [E(G)]
)’(G))[n ( ) +1+max(3X,5Y)

graph G = (X, Y) with order n. where x = min{d(v) |
veE X}, 0y = min{d(v)| v € Y}.
The concept of k-subdomination number 7Yis was

)J for a bipartite

introduced by Cockayne et al. in [11]. In the special cases
k = |V|, Yks is the signed domination number 7s; (G).
Cockayne et al. established a sharp lower bound on 7 for
trees. In Section 4.3, we show that for any graph G of order

o Fiin <k )(A+ 2)
o+1

results, we immediately obtain the lower bounds on Yk for r-

n and size €, Yks = n . By above the

regular graphs.
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