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Preface

With the advent of powerful computing tools and numerous advances in math-
ematics, computer science and cryptography, algorithmic number theory has
become an important subject in its own right. Both external and internal
pressures gave a powerful impetus to the development of more powerful al-
gorithms. These in turn led to a large number of spectacular breakthroughs.
To mention but a few, the LLL algorithm which has a wide range of appli-
cations, including real world applications to integer programming, primality
testing and factoring algorithms, sub-exponential class group and regulator
algorithms, etc ...

Several books exist which treat parts of this subject. (It is essentially
impossible for an author to keep up with the rapid pace of progress in all
areas of this subject.) Each book emphasizes a different area, corresponding
to the author’s tastes and interests. The most famous, but unfortunately the
oldest, is Knuth’s Art of Computer Programming, especially Chapter 4.

The present book has two goals. First, to give a reasonably comprehensive
introductory course in computational number theory. In particular, although
we study some subjects in great detail, others are only mentioned, but with
suitable pointers to the literature. Hence, we hope that this book can serve
as a first course on the subject. A natural sequel would be to study more
specialized subjects in the existing literature.

The prerequisites for reading this book are contained in introductory texts
in number theory such as Hardy and Wright [H-W)] and Borevitch and Shafare-
vitch [Bo-Sh]. The reader also needs some feeling or taste for algorithms and
their implementation. To make the book as self-contained as possible, the main
definitions are given when necessary. However, it would be more reasonable for
the reader to first acquire some basic knowledge of the subject before studying
the algorithmic part. On the other hand, algorithms often give natural proofs
of important results, and this nicely complements the more theoretical proofs
which may be given in other books.

The second goal of this course is practicality. The author’s primary in-
tentions were not only to give fundamental and interesting algorithms, but
also to concentrate on practical aspects of the implementation of these algo-
rithms. Indeed, the theory of algorithms being not only fascinating but rich,
can be (somewhat arbitrarily) split up into four closely related parts. The first
is the discovery of new algorithms to solve particular problems. The second is
the detailed mathematical analysis of these algorithms. This is usually quite



Preface IX

mathematical in nature, and quite often intractable, although the algorithms
seem to perform rather well in practice. The third task is to study the com-
plexity of the problem. This is where notions of fundamental importance in
complexity theory such as NP-completeness come in. The last task, which
some may consider the least noble of the four, is to actually implement the
algorithms. But this task is of course as essential as the others for the actual
resolution of the problem.

In this book we give the algorithms, the mathematical analysis and in
some cases the complexity, without proofs in some cases, especially when it
suffices to look at the existing literature such as Knuth's book. On the other
hand, we have usually tried as carefully as we could, to give the algorithms
in a ready to program form-in as optimized a form as possible. This has the
drawback that some algorithms are unnecessarily clumsy (this is unavoidable
if one optimizes), but has the great advantage that a casual user of these
algorithms can simply take them as written and program them in his/her
favorite programming language. In fact, the author himself has implemented
almost all the algorithms of this book in the number theory package PARI
(see Appendix A).

The approach used here as well as the style of presentation of the algo-
rithms is similar to that of Knuth (analysis of algorithms excepted), and is
also similar in spirit to the book of Press et al [PFTV| Numerical Recipes (in
Fortran, Pascal or C), although the subject matter is completely different.

For the practicality criterion to be compatible with a book of reasonable
size, some compromises had to be made. In particular, on the mathematical
side, many proofs are not given, especially when they can easily be found
in the literature. From the computer science side, essentially no complexity
results are proved, although the important ones are stated.

The book is organized as follows. The first chapter gives the fundamental
algorithms that are constantly used in number theory, in particular algorithms
connected with powering modulo N and with the Euclidean algorithm.

Many number-theoretic problems require algorithms from linear algebra
over a field or over Z. This is the subject matter of Chapter 2. The highlights

of this chapter are the Hermite and Smith normal forms, and the fundamental
LLL algorithm.

In Chapter 3 we explain in great detail the Berlekamp-Cantor-Zassenhaus
methods used to factor polynomials over finite fields and over Q, and we also
give an algorithm for finding all the complex roots of a polynomial.

Chapter 4 gives an introduction to the algorithmic techniques used in
number fields, and the basic definitions and results about algebraic numbers
and number fields. The highlights of these chapters are the use of the Hermite
Normal Form representation of modules and ideals, an algorithm due to Diaz
y Diaz and the author for finding “simple” polynomials defining a number
field, and the subfield and field isomorphism problems.
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Quadratic fields provide an excellent testing and training ground for the
techniques of algorithmic number theory (and for algebraic number theory
in general). This is because although they can easily be generated, many
non-trivial problems exist, most of which are unsolved (are there infinitely
many real quadratic fields with class number 1?). They are studied in great
detail in Chapter 5. In particular, this chapter includes recent advances on the
efficient computation in class groups of quadratic fields (Shanks’s NUCOMP
as modified by Atkin), and sub-exponential algorithms for computing class
groups and regulators of quadratic fields (McCurley-Hafner, Buchmann).

Chapter 6 studies more advanced topics in computational algebraic num-
ber theory. We first give an efficient algorlthm for computing integral bases
in number fields (Zassenhaus’s round 2 algorithm), and a related algorithm
which allows us to compute explicitly prime decompositions in field exten-
sions as well as valuations of elements and ideals at prime ideals. Then, for
number fields of degree less than or equal to 7 we give detailed algorithms
for computing the Galois group of the Galois closure. We also study in some
detail certain classes of cubic fields. This chapter concludes with a general
algorithm for computing class groups and units in general number fields. This
is a generalization of the sub-exponential algorithms of Chapter 5, and works
quite well. For other approaches, I refer to [Poh-Zas] and to a forthcoming
paper of J. Buchmann. This subject is quite involved so, unlike most other
situations in this book, I have not attempted to give an efficient algorithm,
just one which works reasonably well in practice.

Chapters 1 to 6 may be thought of as one unit and describe many of the
most interesting aspects of the theory. These chapters are suitable for a two
semester graduate (or even a senior undergraduate) level course in number
theory. Chapter 6, and in particular the class group and unit algorithm, can
certainly be considered as a climax of the first part of this book.

A number theorist, especially in the algorithmic field, must have a mini-
mum knowledge of elliptic curves. This is the subject of chapter 7. Excellent
books exist about elliptic curves (for example [Sil] and [Sil3]), but our aim is
a little different since we are primarily concerned with applications of elliptic
curves. But 2 minimum amount of culture is also necessary, and so the flavor
of this chapter is quite different from the others chapters. In the first three sec-
tions, we give the essential definitions, and we give the basic and most striking
results of the theory, with no pretense to completeness and no algorithms.

The theory of elliptic curves is one of the most marvelous mathematical
theories of the twentieth century, and abounds with important conjectures.
They are also mentioned in these sections. The last sections of Chapter 7,
give a number of useful algorithms for working on elliptic curves, with little
or no proofs.

The reader is warned that, apart from the material necessary for later
chapters, Chapter 7 needs a much higher mathematical background than the
other chapters. It can be skipped if necessary without impairing the under-
standing of the subsequent chapters.
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Chapter 8 (whose title is borrowed from a talk of Hendrik Lenstra) consid-
ers the techniques used for primality testing and factoring prior to the 1970’s,
with the exception of the continued fraction method of Brillhart-Morrison
which belongs in Chapter 10.

Chapter 9 explains the theory and practice of the two modern primal-
ity testing algorithms, the Adleman-Pomerance-Rumely test as modified by
H. W. Lenstra and the author, which uses Fermat’s (little) theorem in cyclo-
tomic fields, and Atkin's test which uses elliptic curves with complex multi-
plication.

Chapter 10 is devoted to modern factoring methods, i.e. those which run
in sub-exponential time, and in particular to the Elliptic Curve Method of
Lenstra, the Multiple Polynomial Quadratic Sieve of Pomerance and the Num-
ber Field Sieve of Pollard. Since many of the methods described in Chapters
9 and 10 are quite complex, it is not reasonable to give ready-to-program al-
gorithms as in the preceding chapters, and the implementation of any one of
these complex methods can form the subject of a three month student project.

In Appendix A, we describe what a serious user should know about com-
puter packages for number theory. The reader should keep in mind that the
author of this book is biased since he has written such a package himself (this
package being available without cost by anonymous ftp).

Appendix B has a number of tables which we think may useful to the
reader. For example, they can be used to check the correctness of the imple-
mentation of certain algorithms.

What I have tried to cover in this book is so large a subject that, neces-

sarily, it cannot be treated in as much detail as I would have liked. For further
reading, I suggest the following books.

For Chapters 1 and 3, [Knul] and [Knu2]. This is the bible for algorithm
analysis. Note that the sections on primality testing and factoring are out-
dated. Also, algorithms like the LLL algorithm which did not exist at the
time he wrote are, obviously, not mentioned. The recent book [GCL] contains
essentially all of our Chapter 3, as well as many more polynomial algorithms
which we have not covered in this book such as Grobner bases computation.

For Chapters 4 and 5, [Bo-Sh], [Mar] and [Ire-Ros]. In particular, [Mar]
and [Ire-Ros| contain a large number of practical exercises, which are not far
from the spirit of the present book, [Ire-Ros| being more advanced.

For Chapter 6, [Poh-Zas] contains a large number of algorithms, and treats
in great detail the question of computing units and class groups in general
number fields. Unfortunately the presentation is sometimes obscured by quite
complicated notations, and a lot of work is often needed to implement the
algorithms given there.

For Chapter 7, [Sil] and [Sil3] are excellent books, and contain numerous
exercises. Another good reference is [Hus|, as well as {Ire-Ros] for material on
zeta-functions of varieties. The algorithmic aspect of elliptic curves is beauti-
fully treated in [Cre|, which I also heartily recommend.
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For Chapters 8 to 10, the best reference to date, in addition to [Knu2), is
[Rie]. In addition, Riesel has several chapters on prime number theory.

Note on the exercises. The exercises have a wide range of difficulty,
from extremely easy to unsolved research problems. Many are actually imple-
mentation problems, and hence not mathematical in nature. No attempt has
been made to grade the level of difficulty of the exercises as in Knuth, except
of course that unsolved problems are mentioned as such. The ordering follows
roughly the corresponding material in the text.

WARNING. Almost all of the algorithms given in this book have been
programmed by the author and colleagues, in particular as a part of the Pari
package. The programming has not however, always been synchronized with
the writing of this book, so it may be that some algorithms are incorrect, and
others may contain slight typographical errors which of course also invalidate
them. Hence, the author and Springer-Verlag do not assume any responsibility
for consequences which may directly or indirectly occur from the use of the
algorithms given in this book. Apart from the preceding legalese, the author
would appreciate corrections, improvements and so forth to the algorithms
given, so that this book may improve if further editions are printed. The
simplest is to send an e-mail message to

cohen@math.u-bordeaux.fr

or else to write to the author’s address. In addition, a regularly updated
errata file is available by anonymous ftp from megrez.math.u-bordeaux.fr
(147.210.16.17), directory pub/cohenbook.
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