Martin Gogolla
~ Cris Kobryn (Eds.)

((U MI_)) 2001 =
The Unified @
Modeling Language

Modeling Languages, Concepts, and Tools

LNCS 2185

4th International Conference
Toronto, Canada, October 2001
Proceedings

¢ E%“) Springer
© spring
F

Martin Gogolla Cris Kobryn (Ed.)

«UML» 2001 —
The Unified
Modeling Language

Modeling Languages, Concepts, and Tools

4th International Conference
Toronto, Canada, October 1-5, 2001
Proceedings

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Comell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Martin Gogolla

University of Bremen, Department of Mathematics and Computer Science
Database Systems Group

P.O. Box 33 04 40, 28334 Bremen, Germany

E-mail: gogolla@informatik.uni-bremen.de

Cris Kobryn

Telelogic Technologies

P.O. Box 23 20, Fallbrook, CA 92088, USA
E-mail: cris.kobryn @telelogic.com

Cataloging-in-Publication Data applied for
Die Deutsche Bibliothek - CIP-Einheitsaufnahme

The unified modeling language : modeling languages, concepts, and tools ;
4th international conference ; proceedings / "UML" 2001, Toronto, Canada,
October 1- 5, 2001. Martin Gogolla ; Cris Kabryn (ed.). - Berlin ;
Heidelberg ; New York ; Barcelona ; Hong Kong ; London ; Milan ; Paris ;
Tokyo : Springer, 2001

(Lecture notes in computer science ; Vol, 2185)

ISBN 3-540-42667-1

CR Subject Classification (1998): D.2, D.3, K.6

ISSN 0302-9743
ISBN 3-540-42667-1 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concetned, specifically the rights of ranstation, reprinting, re-use of illustrations, recitation, broadcasting,
reproductioa ont microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer- Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2001
Printed in Germany

Typesetting: Camera-ready by author, data conversion b y PTP- Berlin, Stefan Sossna
Printed on acid-free paper SPIN 10840541 06/3142 543210

Preface

In the four years since the Object Management Group adopted the Unified Mo-
deling Language (UML) in 1997, it has become widely accepted throughout the
software industry and successfully applied to diverse domains. During this time
it has become the de facto standard for specifying software blueprints, which
continue to increase in value as we evolve from analysis and design models to
multi-view architectures. Indeed, it is becoming difficult to find a software pro-
ject with more than ten developers who don’t use UML in some way to specify
part of their architecture.

Despite its rapid and widespread acceptance, however, the UML 1.x series of re-
visions has not been without its problems. Some of the major issues commonly
cited include: excessive size, gratuitous compiexity, limited customizability, non-
standard implementations, and lack of support for diagram interchange. Such
substantive problems can only be addressed by major revisions to UML. Fortu-
nately, the Object Management Group realizes this and has issued four Requests
for Proposals for UML 2.0.

UML 2.0 represents both a wonderful opportunity and a serious responsibility
for the UML community. It is an opportunity to resolve the serious shortco-
mings listed above; it is also a responsibility to ensure that the second version of
the language does not suffer from “second system syndrome.” This conference,
whose objective is to bring together researchers and practitioners to share their
visions for the future of UML, is an ideal place to explore how we can exploit
the opportunity and share the responsibility for UML 2.0. Now in its fourth
year, the < UML>> conference series remains the premier forum for presenting
and discussing innovative ideas that will make UML easier to learn, apply, and
implement.

In total 122 abstracts and 102 papers were submitted to this year’s confe-
rence, of which 32 were selected by the program committee for presentation.
As in 2000, this year’s conference included a two-day tutorial and workshop
session, in which nine tutorials and five workshops were scheduled. The pri-
mary purpose of these sessions was to provide a more informal forum for dis-
cussing state-of-the-art research in UML. Topics included: Agile modeling, tea-
ching UML, concurrency, rigorous development methods, OCL, software archi-
tecture, concurrent, distributed, and real-time applications, tools, requirements,
time-critical systems, meta-modeling, quality assurance, effective diagrammatic
languages and executable UML. A short description of the workshops and tuto-
rials can be found in these proceedings and details at the conference web site:
http://www.cs.toronto.edu/uml2001/.

We would like to express our deepest appreciation to the authors of submitted
papers, tutorials, workshops, and panels, and the program committee members

VI Preface

and the additional referees. Jaelson Castro together with Manuel Kolp did an
excellent job of managing all matters of the conference organization. Heinrich
Hufimann chaired the workshop and tutorial submissions. We would also like to
thank Werner Damm, John Mylepoulos and James Rumbaugh for agreeing to
present invited talks at the conference. Mark Richters and Oliver Radfelder at
the University of Bremen are thanked for their contribution to setting up the
conference web site and in organizing and handling the electronic submission pro-
cess. The ConfMan program (http://confman.unik.no/~confman/ConfMan/)
was used to gather and organize submitted papers and reviews, and Mark Richt-
ers extended it to deal with an online preference selection process for the PC
members. Ralf Kollmann at the University of Bremen organized the prepara-
tion of the final version of the conference proceedings. We would also like to
thank the < UML>> steering committee for their advice, Jean-Michel Bruel and
Robert France for maintaining the mailing list, and last year’s program chair,
Andy Evans, for lots of helpful emails and hints.

July 2001 Martin Gogolla
Cris Kobryn

Organization

Executive Committee

General Chair: Cris Kobryn (Telelogic Technologies, USA)

Conference Chair: Jaelson Castro (Universidade Federal de
Pernambuco, Brazil)

Program Chair: Martin Gogolla (Universitat Bremen,
Germany)

Tutorial/Workshop Chair: Heinrich HuBmann (Technische Universitét

Dresden, Germany)

Organizing Team

Publicity Chair (Europe): Jean-Michel Bruel (University of Pau, France)

Publicity Chair (Americas): Robert France (Colorado State University,
USA)

Program Organization: Ralf Kollmann (Universitidt Bremen, Germany)
Oliver Radfelder (Universitidt Bremen,
Germany)

Mark Richters (Universitit Bremen, Germany)
Local Organization: Manuel Kolp (University of Toronto, Canada)

VIII Organization
Program Committee

Colin Atkinson (DE)
Jean Bezivin (FR)
Marco Boger (DE)
Grady Booch (US)
Jean-Michel Bruel (FR)
David Bustard (UK)
Betty Cheng (US)
Derek Coleman (US)
Steve Cook (UK)
Desmond D’Souza (US)
John Daniels (UK)
Bruce Douglas (US)
Gregor Engels (DE)
Andy Evans (UK)
Robert France (US)
Brian Henderson-Sellers (AU)
Pavel Hruby (DK)
Peter Hruschka (DE)

Additional Referees

Jodo Aratijo

Toby Baier

Julian Bradfield
Benoit Baudry
Didier Buchs
Olivier Burgard
Benoit Caillaud
R. G. Clark
Birgit Demuth
Massimo Felici
Frederic Fondement
Falk Fiinfstiick
Sudipto Ghosh
Nabil Hameurlain
J.H. Hausmann
Reiko Heckel
Annig Lacayrelle
Katharina Mehner
Manfred Muench
Thierry Nodenot

Heinrich Huimann (DE)
Jean-Marc Jezequel (FR)
Stuart Kent (UK)

Haim Kilov (US)

Steve Mellor {(US)
Richard Mitchell (UK)
Ana Maria Dinis Moreira (PT)
Pierre-Alain Muller (FR)
Gunnar Overgaard (SE)
James Rumbaugh (US)
Bernhard Rumpe (DE)
Andy Schiirr (DE)

Bran Selic {CA)

Keng Siau (US)

Perdita Stevens (UK)
Alfred Strohmeier (CH)
Jos Warmer (NL)

Alan Wills (UK)

Francois Pennaneach
Noél Plouzeau
Mohamed Kandé
Anneke Kleppe
Thomas Kiithne
Jochen Kiister
Juliana Kuester-Filipe
Frank-Ulrich Kumichel
Stefan Sauer

Ansgar Schleicher
Lothar Schmitz

Jodo Costa Seco
Shane Sendall

Zixing Shen

Gerson Sunyé

Anne Thomas
Yuhong Tian

Yves Le Traon

Guido Wimmel

Sponsors

IEEE Computer Society
http://www.computer.org

IEEE-CS Technical Committee
on Complexity in Computing (T'CCX)
http://wuw.elet .polimi.it/tccx/

Corporate Donors
Telelogic Technologies
%le’ogic http://wuw.telelogic.com

Rational Software Corporation
http://wuw.rational.com

Rational

Academic Supporters

Universidade Federal Pernambuco
http://wuw.ufpe.br

Universitat Bremen
J http://www.uni-bremen.de

University of Toronto
http://www.toronto.edu

g e y
A :
‘é: g Technische Universitat Dresden
E 1) http://www.uni-dresden.de

Table of Contents

Invited Talk

The Preacher at ArraKeemlot ittt 1
Jim Rumbaugh

Metamodeling

An Action Semantics for MML L i 2
José M. Alvarez, Tony Clark, Andy Evans, Paul Sammut

The Essence of Multilevel Metamodeling 19
Colin Atkinson, Thomas Kiihne

Mapping between Levels in the Metamodel Architecture 34
José M. Alvarez, Andy Evans, Paul Sammut

Activity Diagrams

An Execution Algorithm for UML Activity Graphs..................... 47
Rik Eshuis, Roel Wieringa

Timing Analysis of UML Activity Diagrams 62
Li Xuandong, Cui Meng, Pei Yu, Zhao Jianhua, Zheng Guoliang

UML Activity Diagrams as a Workflow Specification Language 76
Marlon Dumas, Arthur H .M. ter Hofstede

OCL

On Querying UML Data Models with OCL.. 91
D.H. Akehurst, B. Bordbar

OCL as a Specification Language for Business Rules in Database
Applications. e 104

Birgit Demuth, Heinrich Hussmann, Sten Loecher

XI1 Table of Contents

A Formal Semantics for OCL 1.4. 118

Maria Victoria Cengarle, Alexander Knapp

Architecture and Patterns

Refactoring UML Models 134

Gerson Sunyé, Damien Pollet, Yves Le Traon, Jean-Marc Jézéquel

UML Support for Designing Software Systems as a Composition
of Design Patterns i, e 149

Sherif M. Yacoub, Hany H. Ammar

Integrating the ConcernBASE Approach with SADL 166

Valentin Crettaz, Mohamed Mancona Kandé, Shane Sendall,
Alfred Strohmeier

Analysis and Testing

The Message Paradigm in Object-Oriented Analysis 182
Frank Devos, Eric Steegmans

A UML-Based Approach to System Testingc........ 194
Lionel Briand, Yvan Labiche

Performance and Databases

UML Modelling and Performance Analysis of Mobile Software
Architectures i 209

Vincenzo Grassi, Raffaela Mirandola

Extending UML for Object-Relational Database Design................. 225
E. Marcos, B. Vela, J.M. Cavero

Invited Talk

Understanding UML - Pains and Rewards 240

Werner Damm

Table of Contents XIII

Graph Transformations

A Formal Semantics of UML State Machines Based
on Structured Graph Transformation 241

Sabine Kuske

A Visualization of OCL Using Collaborations 257

Paolo Bottoni, Manuel Koch, Francesco Parisi-Presicee,
Gabriele Taentzer

Rule-Based Specification of Behavioral Consistency Based
on the UML Meta-model 272

Gregor Engels, Reiko Heckel, Jochen Malte Kuster

Real-Time and Embedded Systems

A New UML Profile for Real-Time System Formal Design and Validation . 287
L. Apurille, P. de Saqui-Sannes, C. Lohr, P. Sénac, J.-P. Courtiat

Representing Embedded System Sequence Diagrams
as a Formal Language e 302

Elizabeth Latronico, Philip Koopman

Scenario-Based Monitoring and Testing of Real-Time UML Models. 317
Marc Lettrari, Jochen Klose

Associations and Ontology

Semantics of the Minimum Multiplicity in Ternary Associations in UML .. 329

Gonzalo Génova, Juan Llorens, Paloma Martinez

Extending UML to Support Ontology Engineering for the Semantic Web . . 342

Kenneth Baclawski, Mieczyslaw K. Kokar, Paul A. Kogut, Lewis Hart,
Jeffrey Smith, William S. Holmes, Jerzy Letkowski,
Michael L. Aronson

On Associations in the Unified Modelling Language 361
Perdita Stevens

X1V Table of Contents

Statecharts

iState: A Statechart Translator 0. 376
Emil Sekerinski, Rafik Zurob

Specifying Concurrent System Behavior and Timing Constraints
Using OCL and UML i 391

Shane Sendall, Alfred Strohmeier

Formalization of UML-Statecharts 406

Michael von der Beeck

Invited Talk

UML for Agent-Oriented Software Development: The Tropos Proposal 422
John Mylopoulos, Manuel Kolp, Jaelson Castro

Components

A UML Meta-model for Contract Aware Components 442
Torben Weis, Christian Becker, Kurt Geihs, Noél Plouzeau

A Specification Model for Interface Suites 457
E.E. Roubtsova, L.C.M. van Gool, R. Kuiper, H B.M. Jonkers

Use Cases

Against Use Case Interleaving 472
Pierre Metz, John O’Brien, Wolfgang Weber

Estimating Software Development Effort Based on Use Cases - Experiences
fromIndustry eee..... 487

Bente Anda, Hege Dreiem, Dag LK. Sjsberg, Magne Jargensen

Workshops and Tutorials

Workshops and Tutorials at the UML 2001 Conference 503

Heinrich Hussmann

Author Index 509

The Preacher at Arrakeen

Jim Rumbaugh

Rational Software Corporation

Abstract. In the Dune novels, Paul Atreides fights a battle for sur-
vival against nefarious forces and succeeds in uniting the Universe under
his control. Eventually, however, a bureaucratic and militaristic religion
grows up around his legend. Disillusioned by the atrocities committed in
his name, Paul abandons his throne and returns in disguise as the mys-
terious Preacher at Arrakeen to denounce the bureaucracy, fanaticism,
and tyranny of his out-of-control followers. Sometimes that’s how 1 feel
about UML. This talk (sermon?) will denounce the excesses of the UML
cult and see if it can be saved from its friends.

M. Gogolia and C. Kobryn (Eds.): UML 2001, LNCS 2185, p. 1, 2001.
© Springer-Verlag Berlin Heidelberg 2001

An Action Semantics for MML

José M. Alvarez!, Tony Clark?, Andy Evans®, and Paul Sammut®

! Dpto. de Lenguajes y Ciencias de la Computacién.
University of Malaga, Malaga, 29071, Spain
alvarezp@lcc.uma.es
2 Dpt. of Computer Science, King’s College,
Strand, London, WC2R 2LS, United Kingdom
anclark@dcs.kcl.ac.uk
% Dpt. of Computer Science, University of York,
Heslington, York, YO1 5DD, United Kingdom
andye®cs.york.ac.uk, pauls@cs.york.ac.uk

Abstract. This paper describes an action semantics for UML based on
the Meta-Modelling Language (MML) - a precise meta-modelling lan-
guage designed for developing families of UML languages. Actions are
defined as computational procedures with side-effects. The action seman-
tics are described in the MML style, with model, instance and semantic
packages. Different actions are described as specializations of the basic
action in their own package. The aim is to show that by using a Cataly-
sis like package extension mechanism, with precise mappings to a simple
semantic domain, a well-structured and extensible model for an action
language can be obtained.

1 Introduction

The UML actions semantics has been submitted by the action semantics con-
sortium to "extend the UML with a compatible mechanism for specifying action
semantics in a software-independent manner” [1]. The submission defines an
extension to the UML 1.4 meta-model which includes an abstract syntax and
semantic domain for an action language. This language provides a collection
of simple action constructs, for example write actions, conditional actions and
composite actions, which can be used to describe computational behaviours in
a UML model. A key part of the proposal is a description of the semantics of
object behaviour, based on a history model of object executions.
Unfortunately, the action semantics proposal suffers from a problem com-
monly met when developing large meta-models in UML - how to structure the
model so as to clearly separate its different components. Failure to achieve this
results in a meta-model that is difficult to understand and to modify, particu-
larly, to specialize and extend. In addition, meta-models based on the current
UML semantics suffer from a lack of a precisely defined semantic core upon
which to construct the meta-model. This means that it is often hard to ascer-
tain the correctness of the model, and to overcome this, significant work must

M. Gogolla and C. Kobryn (Eds.): UML 2001, LNCS 2185, pp. 2-18, 2001.
(© Springer-Verlag Berlin Heidelberg 2001

An Action Semantics for MML 3

be invested in clarifying the semantics before any progress can be made. On the
positive side, the basic semantic model used in the action semantics, with its no-
tion of snapshots and history and changes seems quite appropriate to define the
different changing values of a system. In addition, the actions defined in the sub-
mission thoroughly cover the wide range of actions necessary for a useful action
language. Thus, if a way can be found to better restructure what is a significant
piece of work, then clearly there will benefits to all users and implementors of
the language.

The purpose of this paper is to show how the definition of a precise semantic
core and the use of a Catalysis [2] like package extension mechanism can result
in a better structured and adaptable definition of the action semantics. The
work is based on an extension of the Meta-modelling Language (MML) [6], a
precise meta-modelling language developed to enable UML to be re-architected
as a family of modelling languages. However, it must be clear that this is not an
intent to solve the general problem of model executability, but only a proposal
to describe executability features in a MML context.

1.1 The Basics of the MML Model

MML is a metamodeling language intended to rearchitect the core of UML so
it can be defined in a much simpler way and it can be easily extended and
specialised for different types of systems. Among other basic concepts, MML
establishes two orthogonal distinctions, the first one being a mapping between
model concepts (abstract syntax) and instances (semantic domain). The second
is the distinction between model concepts and concrete syntax and applies both
to models and instances. The syntax is the way concepts are rendered. Models
and instances are related by a semantic package that establishes the satisfac-
tion relationship between instances and models. A similar relationship is defined
between between model concepts and concrete syntax.

These distinction are described in terms of a language definition pattern, see
Figure 1. Each component in the pattern is defined as a package. As in UML, a
package is a container of classes and/or other packages. In addition, packages in
MML can be specialised. This is the key mechanism by which modular, extensible
definitions of languages are defined in terms of fundamental patterns, and is
similar to the package extension mechanism defined in [2]. Here, specialization of
packages is shown by placing a UML specialization arrow between the packages.
The child package specializes all (and therefore contains all) of the contents of
the parent package.

Another important component of the MML is its core package, which defines
the based modelling concepts used in UML: packages, classes and attributes.
Currently, the MML model concepts package does not provide a dynamic model
of behaviour. Thus, in order to define a semantic model for the action semantics
in the MML, an extension must be made to the core MML package. This is
described in the following sections.

4 J M. Alvarez et al.

i
i
i

e

Fig. 1. The MMF Method

2 Principles of the New Action Semantics

Two basic goals have led to the redefinition of the action semantics. The first
one is to include the action semantics as the dynamic core of MML, and possi-
bly substitute the static core. This implies the definition of model and instances
views and separation between concepts and syntax. The second goal is to have
this action semantics as simple as possible and as easy to extend and special-
ize as possible. For the goal of simplicity, it is necessary to define as few new
concepts as possible. One of the ways to do this is to reuse whenever possible
the concepts already defined in the other packages of MML. It is also impor-
tant to abstract out the fundamental concepts common to all actions and to
be as removed as possible from the implementational aspects of actions. MML
is designed to be easily extensible, as will the action semantics if we include it
as another part of MML. As the actions semantics will be another package in
MML, it has to follow the structure of the rest of packages, that is, the package
should be composed of model, instance and semantics packages, with the model
and instance packages further divided in packages for concepts, syntax and the
mapping between concepts and syntax.

2.1 New Basic Concepts

The dynamic core tries to model the evolution of the values of the objects in
the system with time. This is in contrast with the view of the static model
that considers instances to be attached to a single value. The approach taken to
define the dynamic model considers a history as a sequence of values, often called
snapshots, being the execution of the actions responsible for the progression from
one value to the next. A snapshot can be related to the whole system, as it is
in the first approach to actions in the MMF document, or to a single object
as it is in this approach. Only those acts causing the change of a value will be
considered to be actions. For example, to write a new value in an instance slot
will be an action as the value of the instance slot is different before and after the
execution of the action. However, the reading of the value of a variable will not be

An Action Semantics for MML 5

considered as an action as no element in the system changes its value. These kind
of acts will be considered to be expressions. In the current definition of MML,
expressions are defined to model the OCL. There is also a subclass of expression
called method, which is used to model the static methods of classes. Thus, the
basic notion of an action is of a model element that relates a series of values with
a series of elements. These input values will be used in the action execution to
update some of the values of the elements associated with the action. The specific
semantics of every action will be described in every subclass action in terms of
its class diagram and well-formedness rules. Unlike in the previous proposal for
action semantics, there is no concept of action execution history with a step for
every state in the execution. In this model, the action execution is simply the
occurrence of the action. If it is a compound action, it can be decomposed into
simpler actions.

2.2 Time

Time was introduced in the previous action semantics definition to define a
timing order in the dynamic model. In our point of view, time is not a concept
general to every type of systems, so will not be used in the basic dynamic model.
However, particular systems as real-time systems can easily extend this model
to cope with the notion of time as best fitted to its purposes.

3 Actions

An Action represents a computational procedure that changes the state of an
element in the system. In order to execute, an action requires some input values
that will be used to compute the new values for other elements in the system.

Methods in MML are also used to define computational procedures. Methods
are side-effect free - they simply evaluate a set of parameters against an OCL
expression to obtain a result. Any method can be defined just by changing the
body expression.

Actions are not side-effect free since they change the value of an element.
Actions will not have a body expression that specifies what the action does.
However, new action classes that specialize the basic Action class will be defined.
Their particular behaviour will be described by means of well-formedness rules.

With this approach, a new action cannot be defined by just changing the
expression that defines it, but there is a set of standard basic actions on top of
which new actions are constructed.

The actions package specializes the staticCore package.

3.1 Concepts

The abstract class Action specializes Classifier. Every action has a set of input
parameters and can produce output values. As the order of the parameters and
results is significant, these associations are ordered. An action will be executed

