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Preface

The cantilever beam is an important structure of microelectro-
mechanical system (MEMS) devices. This simple structure, fixed
at one side and not connected at the opposite side, was inspiring
Kurt Peterson, in the classic paper “Silicon as Mechanical
Material” He was the first scientist to think of the fabrication of
this structure in silicon. Since this pioneering study to fabricated
cantilever beam in silicon was performed, a large number or
research groups have joined this field and greatly expanding the
scope of microcantilever beam structure. At this moment, the
cantilever beam is an active research topic and there are many
interesting applications based on this concept especially in the
areas of chemical and biological sensors. The special advantages
of these types of sensors rely on their versatile qualities such as
microscale dimensions of the sensor area, label-free detection,
high sensitivity, simple integration with electric circuits, and the
potential for simultaneous detection of tens or even hundreds
of targets by using arrays of cantilever beams. The cantilever
beam arrays could be mass fabricated using the semiconductor
and MEMS technologies. The performance of these devices has
been dramatically improved through the development of new
materials and micro and nanotechnologies.

In the past decade, microtechnology has explored the
submicron regime, and nanomechnical systems (NEMS) have
started to attract interest for a wide range of applications due to
their unique properties. Micro- and nanosized cantilever beams
are robust devices whose high sensitivity and selectivity allow
them to detect physical, chemical, and biological components by
measuring changes in cantilever bending or in resonant frequency.
Several types of optical and electrical signal transductions have
been reported for diverse application in vacuum, air, or liquid.
Nanocantilever beams have an intrinsically high mass sensitivity
and thus evolved into a powerful tool for absolute mass detection
of molecules.
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This book focuses on the nanocantilever beam. Nanometer-
size mechanical structures show exceptional properties generated
by their reduced dimensions. These properties enable new
sensing concepts and transduction mechanisms that will allow
the enhancement of the performance of the actual devices to
their fundamental limits. The book is divided into three parts
and covers important research that was performed in this area
in the past decade. The first part is about nanocantilever beam
fabrication using silicon or polymer as substrate materials. The
second part studies the nonlinearity of nanocantilever beam
resonators. At small vibrational amplitudes, nanocantilever beams
behave as mechanical devices. The nonlinear effects are manifested
when the vibration amplitude increases. Euler-Bernoulli beam
theory is widely used to successfully predict the linear dynamics
of micro- and nanocantilever beams. However, its capacity to
characterize the nonlinear dynamics of these devices has not yet
been rigorously assessed, despite its use in nanoelectromechanical
systems (NEMS) development. The study of nonlinear dynamics
of nanocantilever beam provides an analytical tool in order to
optimize the resonant nanosensor design and enhance its
performance for precision measurements applications. The third
part focuses on important applications of diverse nanostructures
such as carbon nanotubes, nanomembrane structures, lead
zirconate titanate (PZT) nanofibers, and nanomechanical beams.
Nanocantilever beams have important applications as optical
transducers and actuators. Fully integrated cavity optomechanical
transducers for mechanical position and motion sensing with
high precision, high bandwidth, and a small footprint are described
in the book. Nanophotonics has emerged as a viable option for
addressing the transduction issues of nanomechnical beams
decreasing sizes. Integrated nano-optomechanical systems have
demonstrated exceptional displacement sensitivity. Nanobridge
structures fabricated from zinc oxide (ZnO) nanowires and used as
gassensorsarealso presented inthe book. The fabrication techniques
for the ZnO nanowire chemical sensor and the experimental
testing of the sensor are discussed. An important application of
nanocantilever beams is in the area of biotechnology. When the
nanocantilever beam is fabricated from materials with different
thermal expansion coefficients, it could act as a calorimeter used
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to detect the temperature of mammalian cells. The nanocantilever
beam functionalized with an antibody was demonstrated as a
highly sensitive sensor for the detection of diverse biomolecules.

This book offers very diverse information about the
nanocantilever beam, nanobridge, and nanomembrane structures
whose high sensitivity allow them to detect physical, chemical,
and biological components. A variety of materials could be used
for the fabrication of nanocantilever beams. Several types of
optical and electrical signal transductions methods have been
reported for diverse applications in the air, liquid, and vacuum.
This book presents the state of the art of all presented subjects, and
the editors hope that this book will be very useful for researchers
in this field. We would like to thank the authors for their efforts
to contribute to this collection of research topics focused on
nanocantilever beams. We were fortunate to meet each author
and discussed each chapter at the NMC 2013 Workshop on
Nanomechanical Sensing, at Stanford University. We hope that this
collected work will provide excellent scientific reference for an
audience with a diversity of backgrounds and interests, including
students, academic researchers, industry specialists, policy-
makers, and enthusiasts.

loana Voiculescu

The City College of New York, New York, NY, USA

Mona Zaghloul

The George Washington University, Washington, DC, USA
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