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PREFACE TO THE SECOND EDITION

TWENTY-FIVE years have passed since the writing of this volume in its first edition. Such a
long interval has inevitably made necessary a fairly thorough revision and expansion of the
book for its second edition.

The original choice of material was such that, with some very slight exceptions, it has not
become obsolete. In this part, only some relatively minor additions and improvements
have been made.

It has, however, been necessary to incorporate a considerable amount of new material.
This relates in particular to the theory of the magnetic properties of matter and the theory
of optical phenomena, with new chapters on spatial dispersion and non-linear optics.

The chapter on electromagnetic fluctuations has been deleted, since this topic is now
dealt with, in a different way, in Volume 9 of the Course.

As with the other volumes, invaluable help in the revision has been derived from the
comments of scientific colleagues, who are too numerous to be named here in their entirety,
but to whom we offer our sincere thanks. Particularly many comments came from V. L.
Ginzburg, B. Ya. Zel'dovich and V. P. Krainov. It was most useful to be able to hold regular
discussions of questions arising, with A. F. Andreev, I. E. Dzyaloshinskii and I. M. Lifshitz.
We are particularly grateful to S. L. Vainshtein and R. V. Polovin for much assistance in
revising the chapter on magnetohydrodynamics. Lastly, our thanks are due to A. S.
Borovik-Romanov, V. I. Grigor’ev and M. 1. Kaganov for reading the manuscript and
for a number of useful remarks.

Moscow

E. M. LirsHITZ
July, 1981 L. P.

PITAEVSKIT

ECM-A*



PREFACE TO THE FIRST ENGLISH EDITION

THe present volume in the Course of Theoretical Physics deals with the theory of
electromagnetic fields in matter and with the theory of the macroscopic electric and
magnetic properties of matter. These theories include a very wide range of topics, as may be
seen from the Contents.

In writing this book we have experienced considerable difficulties, partly because of the
need to make a selection from the extensive existing material, and partly because the
customary exposition of many topics to be included does not possess the necessary
physical clarity, and sometimes is actually wrong. We realize that our own treatment still
has many defects, which we hope to correct in future editions.

Weare grateful to Professor V. L. Ginzburg, who read the book in manuscript and made
some useful comments. I. E. Dzyaloshinskii and L. P. Pitaevskil gave great help in reading
the proofs of the Russian edition. Thanks are due also to Dr Sykes and Dr Bell, who not
only carried out excellently the arduous task of translating the book, but also made some
useful comments concerning its contents.

Moscow L. D. LanDAU
June, 1959 E. M. LiFsHITZ

xi



NOTATION

Electric field E

Electric induction D

Magnetic field H

Magnetic induction B

External electric field €, magnitude ¢
External magnetic field $, magnitude $
Dielectric polarization P

Magnetization M

Total electric moment of a body £
Total magnetic moment of a body .#
Permittivity e

Dielectric susceptibility &

Magnetic permeability pu

Magnetic susceptibility x

Current density j

Conductivity o

Absolute temperature (in energy units) 7T

Pressure P

Volume V

Thermodynamic quantities: per unit volume for a body
entropy S

internal energy
free energy

6 m o
TN e

thermodynamic potential
(Gibbs free energy)

Chemical potential (
A complex periodic time factor is always taken as e ™.
Volume element d ¥ or d3x; surface element df.

The summation convention always applies to three-dimensional (Latin) and two-
dimensional (Greek) suffixes occurring twice in vector and tensor expressions.
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Notation Xiii

References to other volumes in the Course of Theoretical Physics:

Mechanics = Vol. 1 (Mechanics, third English edition, 1976).

Fields = Vol. 2 (The Classical Theory of Fields, fourth English edition, 1975).
OM = Vol. 3 (Quantum Mechanics—Non-relativistic theory, third English edition, 1977).
QED = Vol. 4 (Quantum Electrodynamics, second English edition, 1982).

SP 1 = Vol. 5 (Statistical Physics, Part 1, third English edition, 1980).

FM = Vol. 6 (Fluid Mechanics, English edition, 1959).

TE = Vol. 7 (Theory of Elasticity, second English edition, 1970).

SP 2 = Vol. 9 (Statistical Physics, Part 2, English edition, 1980).

PK = Vol. 10 (Physical Kinetics, English edition, 1981).

All are published by Pergamon Press.
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2 Electrostatics of Conductors

the same as the actual field e. The two fields differ only in the immediate neighbourhood of
the body. where the effect of the irregular molecular fields is noticeable. and this difference
does not affect the averaged field equations. The exact microscopic Maxwell's equations in
the vacuum are

dive = 0. (1.2)
curle = —(1/¢)ch/ét, (1.3)

where h is the microscopic magnetic field. Since the mean magnetic field is assumed to be
zero, the derivative ch,/cr also vanishes on averaging, and we find that the static electric field
in the vacuum satisfies the usual equations

divE =0, curlE =0, (1.4)
le. it is a potential field with a potential ¢ such that
E = —grad ¢, (1.5)

and ¢ satisfies Laplace’s equation

A =0. (1.6)

The boundary conditions on the field E at the surface of a conductor follow from the
equation curl E = 0, which, like the original equation (1.3), is valid both outside and inside
the body. Let us take the z-axis in the direction of the normal n to the surface at some point
on the conductor. The component E, of the field takes very large values in the immediate
neighbourhood of the surface (because there is a finite potential difference over a very small
distance). This large field pertains to the surface itself and depends on the physical
properties of the surface, but is not involved in our electrostatic problem, because it falls off
over distances comparable with the distances between atoms. It is important to note,
however, that, if the surface is homogeneous. the derivatives ¢E,/éx, ¢E,/Cy along the
surface remain finite, even though E. itself becomes very large. Hence, since
(curlE), = ¢E./Cy —CE,/dz = 0, we find that ¢E,/Cz is finite. This means that E, is
continuous at the surface, since a discontinuity in E, would mean an infinity of the
derivative 0E /¢z. The same applies to E,, and since E = 0 inside the conductor, we reach
the conclusion that the tangential components of the external field at the surface must be
zero:

E =0. (1.7)
Thus the electrostatic field must be normal to the surface of the conductor at every point.
Since E = — grad ¢, this means that the field potential must be constant on the surface of

any particular conductor. In other words, the surface of a homogeneous conductor is an
equipotential surface of the electrostatic field.

The component of the field normal to the surface is very simply related to the charge
density on the surface. The relation is obtained from the general electrostatic equation
dive = 4np, which on averaging gives

divE = 4np, (1.8)

p being the mean charge density. The meaning of the integrated form of this equation is
well known: the flux of the electric field through a closed surface is equal to the total charge
inside that surface, multiplied by 4n. Applying this theorem to a volume element lying
between two infinitesimally close unit areas, one on each side of the surface of the



§2 The energy of the electrostatic field of conductors 3

conductor,and using the fact that E = 0 on the inner area, we find that E, = 4no, where s is
the surface charge density. i.e. the charge per unit area of the surface of the conductor. Thus
the distribution of charges over the surface of the conductor is given by the formula

4ne = E, = —c¢/in, (1.9)

the derivative of the potential being taken along the outward normal to the surface. The
total charge on the conductor is
¢
- _ 1.10
e ym %8 df. (1.10)

the integral being taken over the whole surface.

The potential distribution in the electrostatic field has the following remarkable
property: the function ¢(x,y,z) can take maximum and minimum values only at
boundaries of regions where there is a field. This theorem can also be formulated thus: a
test charge e introduced into the field cannot be in stable equilibrium, since there is no point
at which its potential energy e¢ would have a minimum.

The proof of the theorem is very simple. Let us suppose, for example, that the potential
has a maximum at some point 4 not on the boundary of a region where there is a field.
Then the point 4 can be surrounded by a small closed surface on which the normal
derivative 0¢/Cn <0 everywhere. Consequently, the integral over this surface
§(@p/on) df <0. But by Laplace’s equation §(é¢/dn)df =2 ¢dl =0, giving a
contradiction.

§2. The energy of the electrostatic field of conductors

Let us calculate the total energy % of the electrostatic field of charged conductors.t
1

U =—JE2dV, (2.1
8n

where the integral is taken over all space outside the conductors. We transform this integral
as follows:

1
U= — 8 JE gradd)dl/——l—Jdlv(d)E ydV +—Jd)dlvEdl

The second integral vanishes by (1.4), and the first can be transformed into integrals over
the surfaces of the conductors which bound the field and an integral over an infinitely
remote surface. The latter vanishes. because the field diminishes sufficiently rapidly at
infinity (the arbitrary constant in ¢ is assumed to be chosen so that ¢ = 0 at infinity).
Denoting by ¢, the constant value of the potential on the ath conductor, we have}

P =L :
¥ = Snggl(fundf—gngcpa EEE,dJ.

t+ The square E? is not the same as the mean square e? of the actual field near the surface of a conductor or
inside it (where E = 0 but, of course, e? # 0). By calculating the integral (2.1) we ignore the internal energy of the
conductor as such, which is here of no interest, and the affinity of the charges for the surface.

t Intransforming volume integrals into surface integrals, both here and later. it must be borne in mind that £,
is the component of the field along the outward normal to the conductor. This direction is opposite to that of the
outward normal to the region of the volume integration, namely the space outside the conductors. The sign of the
integral is therefore changed in the transformation.



4 Electrostatics of Conductors

Finally. since the total charges e, on the conductors are given by (1.10) we obtain

U=1Y e, b, (2.2)

which is analogous to the expression for the energy of a system of point charges.
The charges and potentials of the conductors cannot both be arbitrarily prescribed;
there are certain relations between them. Since the field equations in a vacuum are linear

and homogeneous. these relations must also be linear, i.e. they must-be given by equations
of the form

('a = Z Cab¢b' (23)
b

where the quantities C,,, C,, have the dimensions of length and depend on the shape and
relative position of the conductors. The quantities C,, are called coefficients of capacity,
and the quantities C,, (a # b) are called coefficients of electrostatic induction. In particular,
if there is only one conductor, we have ¢ = C¢, where C is the capacitance, which in order
of magnitude is equal to the linear dimension of the body. The converse relations, giving
the potentials in terms of the charges, are

b= C e, (2.4)
b

where the coefficients C™', form a matrix which is the inverse of the matrix C,,.

Let us calculate the change in the energy of a system of conductors caused by an
infinitesimal change in their charges or potentials. Varying the original expression (2.1), we
have 0% = (1,/4n)fE'6Edl'. This can be further transformed by two equivalent
methods. Putting E = — grad ¢ and using the fact that the varied field, like the original
field, satisfies equations (1.4) (so that divdE = 0), we can write

1
OU = —— |grad¢ - SEdV = S div (¢ SE)dV
4n 4n

- 3 o, o, a1
that is
U =Y ¢,de,, (2.5)
which gives the change in energy due to a change in the charges. This result is obvious; it is
the work required to bring infinitesimal charges de, to the various conductors from

infinity, where the field potential is zero.
On the other hand, we can write

SU = —LJE'grad opdV = ——LJdiv(Eéqﬁ)dV
4n 4n

1 .
=3 2%, 3§En df,
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that is

SU =) e, (2.6)

which expresses the change in energy in terms of the change in the potentials of the
conductors.

Formulae (2.5) and (2.6) show that, by differentiating the energy % with respect to the
charges, we obtain the potentials of the conductors, and the derivatives of % with respect
to the potentials are the charges:

0 Ufoe, = ¢,, QU/OP, = e,. 2.7)

But the potentials and charges are linear functions of each other. Using (2.3) we have
?Uu[0$,0¢, = de,/d, = C,,, and by reversing the order of differentiation we get C,,.
Hence it follows that

Cnb = Cbav (28)

and similarlyC™!, = C™*',,. The energy % can be written asa quadratic form in either the
potentials or the charges:

U = % Z Cab¢a¢b = % Z c- labeneb' (2.9)
a, b a, b

This quadratic form must be positive definite, like the original expression (2.1). From
this condition we can derive various inequalities which the coefficients C,, must satisfy. In
particular, all the coefficients of capacity are positive:

Cu>0 (2.10)
(and also C™', > 0).1
All the coefficients of electrostatic induction, on the other hand, are negative:

Cu<0 (a#b). 2.11)

That this must be so is seen from the following simple arguments. Let us suppose that
every conductor except the ath is earthed, i.e. their potentials are zero. Then the charge
induced by the charged ath conductor on another (the bth, say)is e, = C,,¢,. [t is obvious
that the sign of the induced charge must be opposite to that of the inducing potential, and
therefore C,, < 0. This can be more rigorously shown from the fact that the potential of the
electrostatic field cannot reach a maximum or minimum outside the conductors. For
example, let the potential ¢, of the only conductor not earthed be positive. Then the
potential is positive in all space, its least value (zero) being attained only on the earthed
conductors. Hence it follows that the normal derivative d¢/dn of the potential on the
surfaces of these conductors is positive, and their charges are therefore negative, by (1.10).
Similar arguments show that C~',, > 0.

The energy of the electrostatic field of conductors has a certain extremum property,
though this property is more formal than physical. To derive it, let us suppose that the

t We may also mention that another inequality which must be satisfied if the form (2.9) is positive is
C,.Cip >Cis*:



6 Electrostatics of Conductors

charge distribution on the conductors undergoes an infinitesimal change (the total charge
on each conductor remaining unaltered), in which the charges may penetrate into the
conductors; we ignore the fact that such a charge distribution cannot in reality be stationary.
We consider the change in the integral % = (1/8n) | E*dV, which must now be extended
over all space. including the volumes of the conductors themselves (since after the
displacement of the charges the field E may not be zero inside the conductors). We write

1
SU = ——Jgradd)-éEdl/
4n

1 (.. . .
—~do1v(¢6E)dV+EJ¢d1vﬁEdb.

The first integral vanishes, being equivalent to one over an infinitely remote surface. In the
second integral, we have by (1.8) divéE = 4n8p, so that d # = [ ¢pdpdV. This integral
vanishes if ¢ is the potential of the true electrostatic field, since then ¢ is constant inside
each conductor, and the integral [ §9d} over the volume of each conductor is zero, since
its total charge remains unaltered.

Thus the energy of the actual electrostatic field is a minimum relative to the energies of
fields which could be produced by any other distribution of the charges on or in the
conductors (Thomson's theorem).

From this theorem it follows, in particular, that the introduction of an uncharged
conductor into the field of given charges (charged conductors) reduces the total energy of
the field. To prove this, it is sufficient to compare the energy of the actual field resulting
from the introduction of the uncharged conductor with the energy of the fictitious field in
which there are no induced charges on that conductor. The former energy, since it has the
least possible value, is less than the latter energy, which is also the energy of the original
field (since, in the absence of induced charges, the field would penetrate into the conductor,
and remain unaltered). This result can also be formulated thus: an uncharged conductor
remote from a system of given charges is attracted towards the system.

Finally, it can be shown that a conductor (charged or not) brought into an electrostatic
field cannot be in stable equilibrium under electric forces alone. This assertion generalizes
the theorem for a point charge proved at the end of §1, and can be derived by combining the
latter theorem with Thomson’s theorem. We shall not pause to give the derivation in detail.

Formulae (2.9) are useful for calculating the energy of a system of conductors at finite
distances apart. The energy of an uncharged conductor in a uniform external field €, which
may be imagined as due to charges at infinity, requires special consideration. According to
(2.2), this energy is % = 1e¢, where e is the remote charge which causes the field, and ¢ is
the potential at this charge due to the conductor. % does not include the energy of the
charge ¢ in its own field, since we are interested only in the energy of the conductor. The
charge on the conductor is zero, but the external field causes it to acquire an electric dipole
moment. which we denote by 2. The potential of the electric dipole field at a large distance
rfromitis¢ = 22 - r/r>. Hence % = e + r/2r3. But —er/r? is just the field € due to the
charge ¢. Thus

=12 6. (2.12)

+ We shall not give here the simple arguments which demonstrate that the extremum is a minimum.”



