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BOOK X

INTRODUCTORY NOTE

The discovery of the doctrine of incommensurables is attributed to
Pythagoras. Thus Proclus says (Comm. on Euel. 1. p. 65, 19) that Pythagoras
“discovered the theory of irrationals’”; and, again, the scholium on the begin-
ning of Book x., also attributed to Proclus, states that the Pythagoreans were
the first to address themselves to the investigation of commensurability, having
discovered it by means of their observation of numbers. They discovered,
the scholium continues, that not all magnitudes have a common measure.
“They called all magnitudes measurable by the same measure commensurable,
but those which are not subject to the same measure incommensurable,
and again such of these as are measured by some other common measure
commensurable with one another, and such as are not, incommensurable with
the others. And thus by assuming their measures they referred everything to
different commensurabilities, but, though they were different, even so (they
proved that) not all magnitudes are commensurable with any. (They showed
that) all magnitudes can be rational (dnra) and all irrational (dioya) in a
relative sense (ws mpds 7¢); hence the commensurable and the incommensurable
would be for them mafural (kinds) (¢pvoe), while the rational and irrational
would rest on assumption or convention (0ére).” The scholium quotes further
the legend according to which “the first of the Pythagoreans who made public
the investigation of these matters perished in a shipwreck,” conjecturing that
the authors of this story “ perhaps spoke allegorically, hinting that everything
irrational and formless is properly concealed, and, if any soul should rashly
invade this region of life and lay it open, it would be carried away into the
sea of becoming and be overwhelmed by its unresting cwrrents.” There
would be a reason also for keeping the discovery of irrationals secret for the
time in the fact that it rendered unstable so much of the groundwork of
geometry as the Pythagoreans had based upon the imperfect theory of
proportions which applied only to numbers. We have already, after Tannery,
referred to the probability that the discovery of incommensurability must
have necessitated a great recasting of the whole fabric of elementary geometry,
pending the discovery of the general theory of proportion applicable to
incommensurable as well as to commensurable magnitudes.

It seems certain that it was with reference to the of the diagonal of
a square or the hypotenuse of an isosceles right-angled triangle that Pythagoras
mﬂe his discovery. Plato (Z%eaetetus, 147 ») tells us that Theodorus of
Cyrene wrote about square roots (Svvdues), proving that the square roots of

1 I have already noted (Vol. i. p. 351) that G. Junge (Wann haben die Griechen das
Jrrationale enitdeckt?) disputes this, maintaining that it was the Pythagoreans, but not
Q'thngons, who made the discovery- Jmﬁ;is oblised to alter the reading of the passage

Proclus, on what seems to he quite insufhcient evidence; and in any case I doubt whether
the point is worth so much labouring.

H. E. 1. I



" BOOK X

" three square feet and five square feet are not commensurable with that of one
square foot, and so on, selecting each such square root up to that of 17 square
feet, at which for some reason he stopped. No mention is here made of /2,
doubtless for the reason that its incommensurability had been proved before,
i.e. by Pythagoras. We know that Pythagoras invented a formula for finding
right-angled triangles in rational numbers, and in connexion with this it was
inevitable that he should investigate the relations between sides and hypotenuse
in other right-angled triangles. He would naturally give special attention to
the isosceles right-angled triangle ; he would try to measure the diagonal, he
would arrive at successive approximations, in rational fractions, to the value
of ,/2; he would find that successive efforts to obtain an exact expression for
it failed. It was however an enormous step to conclude that such exact
expression was smpossible, and it was this step which Pythagoras (or the
Pythagoreans) made. We now know that the formation of the side- and
diagonal-num explained by Theon of Smyma and others was Pythagorean,
and also that the theorems of Eucl. 1. 9, 10 were used by the Pythagoreans
in direct connexion with this method of approximating to the value of /2.
The very method by which Euclid proves these propositions is itself an indica-
tion of their connexion with the investigation of ,/2, since he uses a figurc
made up of two isosceles right-angled triangles.

The actual method by which the Pythagoreans proved the incommensura-
bility of /2 with unity was no doubt that referred to by Aristotle (4nal. prior.
1.23, 418 26—7),a reductio ad absurdum by which it is proved that, if the diagonal
is commensurable with the side, it will follow that the same number is both
odd and even. The proof formerly appeared in the texts of Euclid as x. 117,
but it is undoubtedly an interpolation, and August and Heiberg accordingly
relegate it to an Appendix. It is in substance as follows.

Suppose A4C, the diagonal of a square, to be commen- A B
surable with 4.3, its side. Let a: 8 be their ratio expressed
in the smallest numbers.
Then a > B8 and therefore necessarily > 1.
Now AC? : AB'=a*: B,
and, since AC*=2458° [Euck 1 47]
o= 2" C

Therefore a_’ is even, and therefore a is even.
Since a : 8 is in its lowest terms, it follows that 8 must be odd.

Put a=2y;
therefore 4y =2
or B =2y},
so that 87, and therefore 8, must be ezen.

But # was also odd :

which is impossible.

This proof only enables us to prove the incommensurabili
diagonal of a square with its side, or of /2 with unity. In ordertytoo;r;?/:
the incommensurability of the sides of squares, one of which has zires times
the ﬁ:::m of another, an entirely different procedure is necessary ; and we find
in that, even a century after Pythagoras’ time, it was still necessary to use
separate proofs (as the passage of the Thezetetus shows that Theodorus did)
to establish the incommensurability with unity of /3, /5, ... up to /17



INTRODUCTORY NOTE 3

This fact indicates clearly that the general theorem in Eucl. x. g that sguares
which have not to one another the ratio of a square number to a square number
have their sides incommensurable in length was not arrived at all at once, but
was, in the manner of the time, developed out of the separate consideration
of special cases (Hankel, p. 103).

The proposition x. g of Euclid is definitely ascribed by the scholiast to
Theaetetus. Theaetetus was a pupil of Theodorus, and it would seem clear
that the theorem was not known to Theodorus. Moreover the Platonic
passage itself (Z%eaet. 147D sqq.) represents the young Theaetetus as striving
after a general conception of what we call a surd. “The idea occurred to
me, seeing that sguare roots (Swvdpes) appeared to be unlimited in multitude,
to try to arrive at one collective term by which we could designate all these
square roots. ... I divided number in general into two classes. The number
which can be expressed as equal multiplied by equal ({oov lodiis) I likened
to a square in form, and I called it square and equilateral.... The intermediate
number, such as three, five, and any number which cannot be expressed as
equal multiplied by equal, but is either less times more or more times less, so
that it is always contained by a greater and less side, I likened to an oblong
figure and called an oblong number. ... Such straight lines then as square the
equilateral and plane number I defined as length (ufj«os), and such as square
the oblong sguare rools (Swapess), as not being commensurable with the
others ,in length but only in the plane areas to which their squares are
equal.’

There is further evidence of the contributions of Theaetetus to the theory
of incommensurables in a commentary on Eucl. X. discovered, in an Arabic
translation, by Woepcke (Mémoires présentés & I Académie des Sciences, Xiv.,
1856, pp. 658—720). It is certain that this commentary is of Greek origin.
Woepcke conjectures that it was by Vettius Valens, an astronomer, apparently
of Antioch, and a contemporary of Claudius Ptolemy (2nd cent. A.p.).
Heiberg, with grenxer probability, thinks that we have here a fragment of the
commentary of Pappus (Zwklid-studien, pp. 169g—71), and this is rendered
practically certain by Suter (Die Mathematiker und Astronomen der Araber
und ithre Werke, pp. 49 and 211). This commentary states that the theory
of irrational magnitudes “ had its origin in the school of Pythagoras. It was
considerably developed by Theaetetus the Athenian, who gave proof, in this
part of mathematics, as in others, of ability which has been justly admired.
He was one of the most bappily endowed of men, and gave himself up, with a
fine enthusiasm, to the investigation of the truths contained in these sciences,
as Plato bears witness for him in the work which he called after his name. As
for the exact distinctions of the above-named magnitudes and the rigorous
demonstrations of the propositions to which this theory gives rise, I believe
that they were chiefly established by this mathematician; and, later, the
great Apollonius, whose genius touched the highest point of excellence in
mathematics, added to these discoveries a number of remarkable theories
after many efforts and much labour.

“For Theaetetus had distinguished square roots [puissances must be the
Suvdpes of the Platonic passage] commensurable in length from those which
are incommensurable, and had divided the well-known species of irrational
lines after the different means, assigning the medial to geometry, the binomial
to arithmetic, and the apofome to harmony, as is stated by Eudemus the
Peripatetic.

“ As for Euclid, he set himself to give rigorous rules, which he established,

I—2



i BOOK X

relative to commensurability and incommensurability in general ; he made
precise the definitions and the distinctions between rational and irrational
magnitudes, he set out a great number of orders of irrational magnitudes, and
finally he clearly showed their whole extent.” .

The allusion in the last words must be apparently to X. 115, where it is
proved that from the media/ straight line an unlimited number of other
irrationals can be derived all different from it and from one another.

The connexion between the media/ straight line and the geometric mean
is obvious, because it is in fact the mean proportional between two rational
straight lines “commensurable in square only.” Since § (x +y) is the arithmetic
mean between z, y, the reference to it of the binomial can be understood.
The connexion between the apotome and the harmonic mean is explained by
some propositions in the second book of the Arabic commentary. The

harmonic mean between x, y is }:JT; , and propositions of which Woepcke
quotes the enunciations prove that, if a rational or a medial area has for onc
of its sides a dinomial straight line, the other side will be an agofome of corre-
sponding order (these propositions are generalised from Eucl X. 111—4); the
fact is :ha::—%=xff’ (x=y).

One other predecessor of Euclid appears to have written on irrationals,
though we know no more of the work than its title as handed down by
Diogenes Laertius’. According to this tradition, Democritus wrote wepi
dAdywy ypappdv xoi vacrav [, fwo Books on irrational straight lines and
solids (apparently). Hultsch (Newe Jakrbiicher fiir Philologie und Pidagogik,
1881, pp. 578—9) conjectures that the true reading may be wepi dAdywv
ypeppiv xAacrdv, “‘on irrational broken lines.” Hultsch seems to have
m mind s#aight lines divided into two parts one of which is rational
and the other irrational (*“Aus einer Art von Umkehr des Pythagoreischen
Lehrsatzes iiber das rechtwinklige Dreieck gieng zuniichst mit Leichtigkeit
hervor, dass man eine Linie construiren kdnne, welche als irrational zu
bezeichnen ist, aber durch Brech sich darstellen ldsst als die Summe
einer rationalen und einer irrationalen Linie”). But I doubt the use of x\aords
in the sense of breaking one straight line into parts ; it should properly mean
a bent line, ie. two straight lines forming an angle or droken short of at their
point of meeting. It is also to be observed that waordv is quoted as a
Democritean word (opposite to xevv) in a fragment of Aristotle (202). I see
therefore no reason for questioning the correctness of the title of Democritus’
book as above quoted.

I will here quote a valuable remark of Zeuthen’s relating to the classifi-
cation of irrationals. He says (Geschichte der Mathematik im Altertum und
Mittelalter, p. gé) “Since such roots of equations of the second degree as are
incommensurable with the given magnitudes cannot be expressed by means
of the latter and of numbers, it is conceivable that the Greeks, in exact
investigations, introduced no apgrommat‘ e values but worked on with the
magnitudes they had found, which were represented by straight lines obtained
by the construction corresponding to the solution of the equation. That is
exactly the same thing which happens when we do not evaluate roots but content
ourselves with expressing them by radical signs and other algebraical symbols.
But, inasmuch as one straight line looks like another, the Greeks did not get

! Diog. Laert. 1X. 4%, p. 239 (ed. Cobet).



INTRODUCTORY NOTE 5

the same clear view of what they denoted (ie. by simple inspection) as our
system of symbols assures to us. For this reason it was necessary to under-
take a classification of the irrational magnitudes which had been arrived at by
successive solution of equations of the second degree.” To much the same
effect Tannery wrote in 1882 (De la solution géométrique des problémes du
second degré avand Euclide in Mémoires. de la Société des sciences physiques et
naturelles de Bordeaux, 2° Série, 1v. pp. 395—416). Accordingly Book x.
formed a repository of results to which could be referred problems which
depended on the solution of certain types of equations, quadratic and biquad-
ratic but reducible to quadratics.
Consider the quadratic equations
x*t2ax.ptf.p'=0,

where p is a rational straight line, and e, B are coefficients. Qur quadratic
equations in algebra leave out the p ; but I put it in, because it has always to
be remembered that Euclid’s x is a séraig/t line, not an algebraical quantity,
and is therefore to be found in terms of, or in relation to, a certain assumed
rational straight line, and also because with Euclid p may be not only of the

form a, where a represents a units of length, but also of the form Jg’- .a,

which represents a length “commensurable in square only” with the unit of
length, or ,/4 where A represents a number (not squa.rei' of units of area.
The use therefore of p in our equations makes it unnecessary to multiply
different cases according to the relation of p to the unit of length, and has the
further advantage that, e.g., the expression p+ ,/%.p is just as general as the
expression ./&.p+./A.p, since p covers the form ./Z.p, both expressions
covering a length either commensurable in length, or “commensurable in
square only,” with the unit of length.
Now the pgositive roots of the quadratic equations

x'+2eax.p+B.p'=0
can only have the following forms
Xy =p(¢ + ‘Vo.’-ﬁ), £I'=p(¢_\/¢3_ﬁ) }
xy=p(Wa+ B +a), 2/ =p(Va'+ B ~a)

The negative roots do not come in, since ¥ must be a straight line. The
omission however to bring in negative roots constitutes no loss of generality,
since the Greeks would write the equation leading to negative roots in another
form so as to make them positive, 1.e. they would change the sign of x in the
equation.

Now the positive roots x,, &, %;, %, may be classified according to the
character of the coefficents «, 8 and their relation to one another.

1. Suppose that a, 8 do not contain any surds, i.e. are either integers or
of the form m/m, where m, n are integers.
Now in the expressions for x;, %, it may be that

2
(1) B is of the form %a’.

Euclid expresses this by saying that the square on ap exceeds the square
on p~/a®— 8 by the square on a straight line commensurable in length with ap.
In this case z, is, in Euclid’s terminology, a first binomial straight line,

and x," a jfirst apolome.
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m?
(2) In general, B not being of the form -nTa.’,
&, is a fourth binomial,
%, a fourth apotome.
Next, in the expressions for x,, &, it may be that
(1) B is equal to - (o* + B), where m, n are integers, i.e. 8 is of the form
.
w-m
Euclid expresses this by saying that the square on pJa’+p exceeds the
square on ap by the square on a straight line commensurable in length with

Nat+ B. Js ume
J “In this case x, is, in Euclid’s terminology, a second binomial,
xy a second apotome. o
(z) In general, 8 not being of the form n’-m’a”
%, is a Jfif2th dinomial,
x, a fifth apotome.
II. Now suppose that a is of the form J ';':—, where m, 7 are integers, and
let us denote it by /A
Then in this case
H=p(JA+VA=B), %' =p(JA-VA=B),
x=p(NA+ B+ JA), 2/ =p (VA +B—J/N).
Thus x,, x, are of the same form as x,, x,.

If JX=Bin x,, %, is not surd but of the form m|n, and if YA+ B in x,, x,
is not surd but of the form sm/», the roots are comprised among the forms
already shown, the first, second, fourth and fifth binomials and apotomes.

If Jl—ﬂ in &y, 2" is surd, then
(1) we may have 8 of the form :—‘;A, and in this case

x, is a third binomial straight line,
2, a third apotome;

(2) in general, B not being of the form —':,—a)«,
x, is a sixth binomial straight line,
x, a sixth apotome.

. With the expressions for 2, x, the distinction between the third and sixth
binomials and apotomes is of course the distinction between the cases
(1) in which 3=§(A+ﬁ), or Bis of the form —.

P
and (2) in which B is not of this form.
. If we take the square root of the product of p and each of the six
binomials and six apotomes just classified, ie.

P (et Na¥=B), p*(Na¥+ B+ ),
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in the six different forms that each may take, we find six new irrationals with
a positive sign separating the two terms, and six corresponding irrationals with
a negative sign. These are of course roots of the equations
2+ 2ax . p'+ 8. pt=0,
These irrationals really come before the others in Euclid’s order (x. 36—
41 for the positive sign and x. 73—78 for the negative sign). As we shall
see in due course, the straight lines actually found by Euclid are

p+ Jk.p, the binomial (7 éx So dvopdrwr)
and the apofome (dworops),
which are the positive roots of the biquadratic (reducible to a quadratic)
-z (1 +A)p.x+ (1 - &) p=0.
2. o+ b the first bimedial (ix 8o péowv mpary)
and the firs¢ apotome of a medial (péoys amorops) mpdry),
which are the positive roots of
-2, Jk(1+R)p. &+ hk(1=APp*=0.

3 ko -“;/}5 p, the second bimedial (& 6o pérov Sevrépa)

and the second apotome of a medial (puéons dworopy Sevrépa),
which are the positive roots of the equation
B+ (B=Np ,
x'—2 —N/—z-p’.x’-!' —k'p =0.

p J . T J PRI
* aN I FIEE RN TR
the major (irrational straight line) (uelfwv)
and the minor (irrational straight line) (doowv),
which are the positive roots of the equation
xt—2p . 2+

pt=o.

1+ A

P ———— p

5 mJJ1+k'+kijz(l=+P)JUx+P—é,

the “side” of a rational plus a medial (area) (pnyrov xai péoov Suvapérm)
and the “side” of a medial minus a rational area (in the Greek 1 pere pyrov
pdaov 10 SAov wowioa),

which are the positive roots of the equation
2 A P
TR TRt e

Mo /3 M /3
Ve Jrrao N2 Ny

the “side” of lhe sum of two medial areas (7 &o péoa Svvapéry)
and the “side” of a medial minus a medial area (in the Greek % pera péoov
péaov 16 GAov wowloa),

which are the positive roots of the equation
.‘t‘—ka.x’p’+A;—§F pt=o.

2
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The above facts and formulae admit of being stated in a great vanety of
ways according to the notation and the particular letters used. Consequently
the summaries which have been given of Eucl x. by various writers differ
much in appearance while expressing the same thing in substance. The first
summary in algebraical form (and a very elaborate ope) seems to have been
that of Cossali (Origine, trasporto in Italia, primi progressi in essa dell
Algebra, Vol. 1. pp. 242—65) who takes credit accordingly (p- 26.5)- In
1794 Meier Hirsch published at Berlin an Aigebraischer Commentar iiber das
sehente Buch der Elemente des Euklides which gives the confents in algebraical
form but fails to give any indication of Euclid’s methods, using modern forms
of proof only. In 1834 Poselger wrote a paper, Ueber das zeknte Buck der
Elemente des’ Euklides, in which he pointed out the defects of Hirsch’s repro-
duction and gave a summary of his own, which however, though nearer to
Euclid’s form, is difficult to follow in consequence of an elaborate system of
abbreviations, and is open to the objection that it is not algebraical enough
to enable the character of Euclid’s irrationals to be seen at a glance. Other
summaries will be found (1) in Nesselmann, Die Algebra der Griechen,
pp. 165—84; (2) in Loria, // periodo aureo della geomelria greca, Mo_dena,
1895, pp- 40—9; (3) in Christensen’s article “Ueber Gleichungen vierten
Grades 1m zehnten Buch der Elemente Euklids” in the Zeitschrift fiir Math. u.
Physik (Historisch-literarische Abtheilung), xxx1v. (188g), pp. zo1—17. The
only summary in English that I know is that in the Penny Cyclopaedia, under
“Irrational quantity,” by De Morgan, who yielded to none in his admiration of
Bookx. “Euclid investigates,” says De Morgan, “every possible variety of lines
which can be represented by ./(./a + ./8), @ and & representing two commen-
surable lines....This book has a completeness which none of the others (not
even the fifth) can boast of : and we could almost suspect that Euclid, having
arranged his materials in his own mind, and having completely elaborated
the 1oth Book, wrote the preceding books after it and did not live to revise
them thoroughly.”

Much attention was given to Book Xx. by the early algebraists. Thus
Leonardo of Pisa (f. about 1202 A.p.) wrote in the 14th section of his Lider
Abaci on the theory of irrationalities (dz fractatu binomiorum et recisorum),
without however (except in treating of irrational trinomials and cubic irra-
tionalities) adding much to the substance of Book x.; and, in investigating
the equation

2+ 22° + 102 = 20,

progounded by Johannes of Palermo, he proved that none of the irrationals
in Eucl. x. would satisfy it (Hankel, pp. 344—6, Cantor, 11, p. 43). Luca
Paciuolo (about 1445—1514 A.D.) in his algebra based himself largely, as he
himself expressly says, on Euclid x. (Cantor, m,, p. 293). Michael Stifel
(1486 or 1487 to 1567) wrote on irrational numbers in the second Book of
his Arithmetica integra, which Book may be r ed, says Cantor (11, p. 402),
as an elucidation of Eucl. X. The works of 0 (1501—76) abound in
speculations regarding the irrationals of Euclid, as may be seen by reference to
Cossali (Vol. 11, especially pp. 268—78 and 382—99); the character of
the various odd and even powers of the binomials and apotomes is therein
investigated, and Cardano considers in detail of what particular forms of
equations, quadratic, cubic, and biquadratic, each class of Euclidean irrationals
can beroots. Simon Stevin (1548—1620) wrote a Zraité des incommensurables
grandeurs en laquelle est sommairement déclaré le contenu du Dixiesme Livre
& Euclide (Oeuvres mathématiques, Leyde, 1634, pp. 2195qq.); he speaks thus
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of the book: “La difficulté du dixiesme Livre d’Euclide est a plusieurs
devenue en horreur, voire jusque A l'appeler la croix des mathématiciens,
matiére trop dure & digérer, et en la quelle n'apergoivent aucune utilité” a
passage quoted by Loria (// periodo aureo della geometria greca, p. 41).

It will naturally be asked, what use did the Greek geometers actually
make of the theory of irrationals developed at such length in Book x.? The
answer is that Euclid himself, in Book xiI1., makes considerable use of the
second portion of Book x. dealing with the irrationals affected with a negative
sign, the gpofomes etc. One object of Book xii1. is to investigate the relation
of the sides of a pentagon inscribed in a circle and of an icosahedron and
dodecahedron inscribed in a sphere to the diameter of the circle or sphere
respectively, supposed rational. The connexion with the regular pentagon of
a straight line cut in extreme and mean ratio is well known, and Euchd first
proves (x111. 6) that, if a 7afional straight line is so divided, the parts are the
irrationals called apofomes, the lesser part being a first apotome. Then, on
the assumption that the diameters of a circle and sphere respectively are
rational, he proves (X111 x1) that the side of the inscribed regular pentagon is
the irrational straight line called minor, as is also the side of the inscribed
icosahedron (xur. 16), while the side of the inscribed dodecahedron is the
irrational called an apofome (Xu1 17).

Of course the investigation in Book x. would not have been complete if
it had dealt only with the irrationals affected with a z¢gasize sign. Those
affected with the positive sign, the dinomials etc., had also to be discussed,
and we find both portions of Book x., with its nomenclature, made use of by
Pappus in two propositions, of which it may be of interest to give the enun-
ciations here.

If, says Pappus (1v. p. 178), 43 be the rational diameter of a semicircle, and
if A8 be produced to C so that BCis equal to the radius, if CD be a tangent,

D

A F C

if £ be the middle point of the arc 8D, and if CZ be joined, then CZ is the
irrational straight line called minor. As a matter of fact, if p is the radius,

CE =4 (5 - 2./3) and CE=J5+f3 _\/5-:"—3.

If, again (p. 182), CD be equal to the radius of a semicircle supposed
B

A H C [+]

rational, and if the tangent DB be drawn and the angle 4.0 5 be bisected by
DF meeting the circumference in % then DF is the excess by which the
binomial exceeds the straight line whick produces with a rational area a medial
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whole (see Eucl x. 77). (In the figure DX is the binomial and KF the other
irrational straight line.; As a matter of fact, if p be the radius,

3 -2
KD=p.“/‘:/:',a.ndKF:p.,/\/3—x=p.( "/32"/2—\%/32"/)-

Proclus tells us that Euclid left out, as alien to a selection of elements, ghe
discussion of the more complicated irrationals, “the unordered irrationals which
Apollonius worked out more fully” (Proclus, p. 74, 23), while the scholiast
to Book x. remarks that Euclid does not deal with all rationals and irrationals
but only the simplest kinds by the combination of which an infinite number
of irrationals are obtained, of which Apollonius also gave some. The author
of the commentary on Book x. found by Woepcke in an Arabic translation,
and above alluded to, also says that “it was Apollonius who, beside the
ordered irrational magnitudes, showed the existence of the unordered and by
accurate methods set forth a great number of them.” It can only be vaguely
gathered, from such hints as the commentator proceeds to give, what the
character of the extension of the subject given by Apollonius may have been.
See note at end of Book.

DEFINITIONS.

1. Those magnitudes are said to be commensurable
which are measured by the same measure, and those incom-
mensurable which cannot have any common measure.

2. Straight lines are commensurable in square when
the squares on them are measured by the same area, and
incommensurable in square when the squares on them
cannot possibly have any area as a common measure.

3. With these hypotheses, it is proved that there exist
straight lines infinite in multitude which are commensurable
and incommensurable respectively, some in length only, and
others in square also, with an assigned straigﬁt line. Let
then the assigned straight line be called rational, and those
straight lines which are commensurable with it, whether in
length and in square or in square only, rational, but those
which are incommensurable with it irrational.

4. And let the square on the assigned straight line be
called rational and those areas which are commensurable
with it rational, but those which are incommensurable with
it irrational, and the straight lines which produce them
irrational, that is, in case the areas are squares, the sides
themselves, but in case they are any other rectilineal figures,
the straight lines on which are described squares equal to

them.
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DEFINITION I.

Sduperpa peyély Méyeraw 78 7¢ abry pérpy perpodpeva, dovppuerpa 8¢, dv
pndiv &vdéxerar xowdv pérpov yevéafar

DEFINITION 2.

Effelar Swvdper oipperpol elow, drav & én alrdy rerpdywva v¢ atr xwply
perpijras, dovpperpor 8¢ drav rois &n adrdv Terpaydvors pndev &vg:’pxmm xwpiov
xowdv pérpov yevéobar.

Commensurable in square is in the Greek dwwdpe. ovpperpos. In earlier
translations (e.g. Williamson’s) dwduer has been translated “in power,” but,
as the particular {:mr represented by Svvaues in Greek geometry is square,
I have thought it best to use the latter word throughout. It will be observed
that Euclid’s expression commensurable in square only (used in Def. 3 and
constantly) corresponds to what Plato makes Theaetetus call a sguare roof
(8vvapes) in the sense of a swrd. If a is any straight line, @ and a./m, or
a./m and a,/n (where m, n are integers or arithmetical fractions in their
lowest terms, proper or improper, but not square) are commensurable in square
only. Of course (as explained in the Porism to X. 10) all straight lines
commensurable in length (pixe), in Euclid’s phrase, are commensurable iz
square also ; but not all straight lines which are commensurable # sguare are
commensurable sz Zngtk as well. On the other hand, straight lines sncom-
mensurable in square are necessarily incommensurable /7 Jength also ; but not
all straight lines which are incommensurable in Jengtk are incommensurable
in square. In fact, straight lines which are commensurable in square only are
incommensurable zz Zngik, but obviously not incommensurable in square.

DEFINITION 3.

Tobrav Swoxeyéva Selxvvras, dru vfj wporebeloy ebbeig. Imdpyovow elfeiar
wAjfe Gmepor odpperpol e kal dovpperpol al piv pijkes pdvov, al d¢ xal Suvdper
kahelobw obv 1 piv wporebeioca ebfela fyr), xal ai Tavry ovpuerpor eire uajxe kol
Suvdper eire Suvdper povoy Pyrad, ai 8 ravry dovpperpor dhoyor kakeiofwaay,

The first sentence of the definition is decidedly elliptical. It should,
strictly speaking, assert that “with a given straight line there are an infinite
number of straight lines which are (r) commensurable either () in square
only or (4) in square and in length also, and (z) incommensurable; either
(@) in length only or (4) in length and in square also.”

The relativity of the terms rafional and irrational is well brought out in
this definition. 'We may set out any straight line and call it rational, and it
is then with reference to this assumed rational straight line that others are
called rational or irrational.

We should carefully note that the signification of ra#fonalin Euclid is wider
than in our terminology. With him, not only is a straight line commensurable i»
length with a rational straight line rational, but a straight line is rational which
is commensurable with a rational straight line i sguare only. Thatis,if pisa

rational straight line, not only is %p rational, where =, # are integers and
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m/n in its lowest terms is not square, but Jg . p is rational also. We should

in this case call \/-:-':T . p irrational. It would appear that Euclid’s termino-

logy here differed as much from that of his predecessors as it does from
ours. We are familiar with the phrase dppyros Suiperpos mijs meumados by
which Plato (evidently after the Pythagoreans) describes the diagonal of a
square on a straight line containing 5 units of length. This “inexpressible
diameter of five (squared)” means /5o, in contrast to the fyr) duiuerpos, the
“expressible diameter” of the same square, by which is meant the approxi-

m
mation ~/so-1, or 7. Thus for Euclid’s predecessors 7 +p would

apparently not have been rational but dppyros, “inexpressible,” i.e. irrational.

I shall throughout my notes on this Book denote a ra#fonal straight line in
Euclid’s sense by p, and by p and o when two different rational straight lines are
required. Wherever then I use p or o, it must be remembered that p, o may
have either of the forms a, /4. a, where a represents a units of length, a being
either an integer or of the form m/#, where m, n are both integers, and £ is an
integer or of the form m/n (where both 2, » are integers) but not square. In
other words, p, o may have either of the forms a or /4, where 4 represents
A units of area and 4 is integral or of the form m/n, where m, z are both
integers. It has been the habit of writers to give 2 and ,/z as the alternative
forms of p, but I shall always use /4 for the second in order to keep the
dimensions right, because it must be borne in mind throughout that p is an
irrational strasght line.

As Euclid extends the signification of rational (fmrds, literally expressible),
so he limits the scope of the term d@\oyos (literally %aving no ratio) as applied
to straight lines. That this limitation was started by himself may perhaps be
inferred from the form of words “/Ze straight lines incommensurable with it
be called irrational.” Irrational straight lines then are with Euclid straight lines
commensurable #either in length nor in square with the assumed rational
straight line. /4. a where % is not square is not irrational; Y. a is irrational,
and so (as we shall see later on) is (/& + ./A)a.

DEFINITION 4.

Kal 70 pév dwd vijs mporcdeions ebfelas rerpdywvov pyrdv, kel & Tov
ovpperpa fyrd, 7a 8¢ rolry dovpuerpa dhoye kaleicBw, xai ol Svvamevar adra
dloyoy, €l pév rerpiywve ey, adral al mAevpal, € 8¢ repd Twa ebvypappa, al
ioa abrols rerpdywve dvaypdpovoar.

As applied to areas, the terms rational and irrational have, on the other
hand, the same sense with Euclid as we should attach to them. According
to Euclid, if p is a rational straight line in Zis sense, p* is rafional and any
area commensurable with it, i.e. of the form Zp® (where % is an integer, or of
the form m/n, where m, n are integers), is rational ; but any area of the form
J&.p* is irrational. Euclid’s rational area thus contains A wunits of area,
yherg 4 is an integer or of the form m/», where m, n are integers ; and his
irvational area is of the form ./£.A. His irrational area is then connected
with his irrational s/rajght line by making the latter the square root of the
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former. This would give us for the irrational séraight line ik . /A, which of
course includes 2. a.

ai Svvdperaw alrd are the straight lines the squares on which are equal to
the areas, in accordance with the regular meaning of 8vacfar 1t is scarcely
possible, in a book written in geometrical language, to translate dvvapéry as
the sguare root (of an area) and Sivacfac as to be the square root (of an area),
although I can use the term “square root” when in my notes I am using an
algebraical expression to represent an area; I shall therefore hereafter use the
word “side” for dwwapévy and “to be the side of” for Svwvaofar, so that
“side” will in such expressions be a short way of expressing the “side of
a sguare equal fo (an area).” In this particular passage it is not quite practi-
cable to use the words ‘““side of ” or ““straight line the square on which is equal
to,” for these expressions occur just afterwards for two alternatives which the
word Swapém covers. I have therefore exceptionally translated * the straight
lines which Produce them ” (i.e. if squares are described upon them as sides).

ai loa avrols Terpdywva dmrp&«ﬁawac, literally “the (straight lines) which
describe squares equal to them ”: a peculiar use of the active of dvaypdgew,
the meaning being of course “the straight lines on which are described the
squares ” which are equal to the rectilineal figures.



