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Plasmonic Nanoelectronics and Sensing

Plasmonic nanostructures provide new ways of manipulating the flow of light, with
nanostructures and nanoparticles exhibiting optical properties never before seen in the
macro-world. Covering plasmonic technology from fundamental theory to real-world
applications, this work provides a comprehensive overview of the field.

e Discusses the fundamental theory of plasmonics, enabling a deeper understanding of
plasmonic technology

e Details numerical methods for modeling, design, and optimization of plasmonic
nanostructures

e Includes step-by-step design guidelines for active and passive plasmonic devices,
demonstrating the implementation of real devices in the standard CMOS nanoscale
electronic—photonic integrated circuit to help cut design, fabrication, and character-
ization time and cost

e Includes real-world case studies of plasmonic devices and sensors, explaining the
benefits and downsides of different nanophotonic integrated circuits and sensing
platforms.

Ideal for researchers, engineers, and graduate students in the fields of nanophotonics
and nanoelectronics as well as optical biosensing.

Er-Ping Li is a Principal Scientist and Director of Nanophotonics and Electronics at the
Institute of High Performance Computing, A*STAR, Singapore. He is a Fellow of the
IEEE and of the Electromagnetics Academy, USA.

Hong-Son Chu is a Scientist at the Nanophotonics and Electronics Department of the
Institute of High Performance Computing, A*STAR, Singapore. He is a member of the
Optical Society of America, the IEEE, and the Materials Research Society.
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Preface

Data communication and information processing are driving the rapid development
of ultra-high speed and ultra-compactness in nano-photo-electronic integration. Plas-
monics technology has in recent years demonstrated the promise to overcome the size
mismatch between microscale photonic and nanoscale electronic integration, and it
likely will be crucial for the next generation of on-chip optical nano-interconnects,
enabling the deployment of small-footprint and low-energy integrated circuitry.

The phenomenon of surface plasmons was first observed in the Lycurgus cup, which
is a Roman glass cage cup in the British Museum, London, UK. This special cup is
made of a dichroic glass that shows a different color depending on the condition of
illumination. Specifically, in daylight, the cup appears to have a green color, which means
that light is being reflected from the cup; however, when a light is shone into the cup and
transmitted through the glass, it appears to have a red color. Today, we know that this
fascinating behavior is due to nanoscopic-scale gold and silver particles embedded in
the glass. However, it took 1500 years and doubtless countless fantastic interpretations
for a plausible explanation to emerge. In the last few decades, the phenomenon of surface
plasmons has been extensively studied both theoretically and experimentally, and there
have been attempts to use it for various applications ranging from solar-cell energy and
sensing to nanophotonic devices.

This book presents the results from many years of our collective research in the
fields of nanoplasmonics and its applications. It presents state-of-the-art plasmonics
device modeling and design techniques, with novel developments in particular in
CMOS-compatible integrated circuits and sensing technologies. We hope this book
can serve as a good basis for further progress in this field, both in academic research and
for industrial applications. The book consists of seven chapters, contributed by Yuriy
Akimov, Zhengtong Liu, Iftikhar Ahmed, Eng Huat Khoo, Er-Ping Li, Hong-Son Chu,
Wu Lin, and Bai Ping, from the Department of Electronics and Photonics, Institute of
High Performance Computing, Singapore, and Shiyang Zhu, Patrick Guo-Qiang Lo, and
Dim-Lee Kwong from the Institute of Microelectronics, Agency for Science Technology
and Research, Singapore.

Chapter 1 introduces the fundamentals of plasmonics associated with Maxwell’s
theory and applications in plasmonics. Chapter 2 provides an introduction to the plas-
monic properties of metal nanostructures. Chapter 3 presents the modeling and simula-
tion of plasmonics associated with plasmonic devices by implementation of frequency-
domain numerical methods. In Chapter 4, time-domain simulation methods, in
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Preface

particular the finite-difference time-domain method, are introduced for passive and
active plasmonic device design. Chapter 5 describes the development of various passive
plasmonic waveguides, in particular CMOS-compatible devices for on-chip nanoelec-
tronic integration, and Chapter 6 presents CMOS-compatible active plasmonic devices
for on-chip nanoelectronic integration. Both theoretical studies and experimental results
are presented in these two chapters. The recent development of plasmonics for biosens-
ing applications is presented in Chapter 7.

We gratefully acknowledge the research support from the Agency for Science Tech-
nology and Research, Singapore. Also acknowledged are the contributors to the book,
Drs. Yuriy Akmov, Zhengtong Liu, Iftikhar Ahmed, Eng Huat Khoo, Wu Lin, Bai Ping,
Shiyang Zhu, and Patrick Guo-Qiang Lo and Professor Dim-Lee Kwong, who did the
really hard work. We also wish to express our gratitude to Mia Balashova and Julie
Lancashire from Cambridge University Press for their great assistance in keeping us
on schedule. Finally, we are grateful to all the contributors’ families, without whose
continuing support and understanding this book would never have been published.

We hope that this book will serve as a valuable reference for engineers, researchers,
and post-graduate students in the fields of nanophotonics and nanoelectronics as well as
optical biosensing. Even though much has been accomplished in these fields, we predict
that many more exciting challenges will arise in these areas.

Er-Ping LI and Hong-Son CHU
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1.1

1.1.1

Fundamentals of plasmonics

In this chapter, we give a brief introduction to the classical electrodynamics of metals
that constitutes the basis of modern plasmonics. We review the Maxwell equations
for electromagnetic fields and consider the main optical properties of metals within
the local-response approximation. In conclusion, we give a general classification of
plasmons that appear in metal structures.

Electromagnetic field equations

Maxwell’s equations in a medium

Most of the electromagnetic phenomena occurring in metals are well described within
the classical electrodynamics based on the macroscopic Maxwell equations. These
equations assume the use of the statistically averaged (over an ensemble of the equivalent
systems) electric and magnetic fields. Practically, the averaging is performed in space
over “physically small” volumes, which are much smaller than the wavelength, but much
longer than the mean interatomic distance. Within this approach, we neglect all field
fluctuations that occur at atomic scales and consider only the macroscopic response of
the medium.

In the absence of external charges and currents, the macroscopic Maxwell equations
for electromagnetic fields in a medium can be written as follows:!

1 9B
VxE=—-2 V.E=anp, (1.1)
c ot
19E 4
VxB=-—4+1j V.B=0, (1.2)
c ot c

where E is the electric field, B is the magnetic induction, p is the induced internal
charge density, j is the induced electric current density, and ¢ is the speed of light
in vacuum. The induced charges and currents comprise the medium’s response to the
electromagnetic field, as a result of its polarization and magnetization.

" Throughout this chapter, all quantities and equations are written in the Gaussian unit system for a more
natural description of electromagnetic fields. For conversion to the SI unit system, we refer the reader to
the textbook by Jackson [1].
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Fundamentals of plasmonics

In general, the induced charges and currents are given with the polarization P and
magnetization M fields,
p=—-V.P, (1.3)
oP
j=—+4+cVxM, (1.4)
at
that allow us to rewrite the macroscopic Maxwell equations in a simpler form,

10B
VXE=——, V.D=0, (1.5)
¢ ot
19D )
VxH=—-——, V:B=0, (1.6)
c ot

where D and H are the auxiliary fields called the electric displacement and magnetic
field, which are introduced to account for the polarization and magnetization of the
medium,

D = E + 4P, (1.7)
H=B—47M. (1.8)

Thus, the Maxwell equations in a medium give us the relation between two pairs of
electric {E, D} and magnetic {B, H} fields. In this sense, Eqs. (1.5) and (1.6) do not
form a closed set of equations until we provide material relations for the medium’s
response to electric and magnetic fields. In general, these relations are given by field-
dependent functions for polarization P = P(E) and magnetization M = M(B) vectors
that eventually result in material relations for the auxiliary fields D = D(E) and H =
H(B).

Material equations

Establishing the relations for D(E) and H(B) is the key issue, since it describes how
the medium responds to electromagnetic fields. In general, these relations are non-
linear. However, for E and B fields that are not too high, the auxiliary fields D(E)
and H(B) can be approximated with linear functions. This is the so-called linear-
electrodynamics approach. In this approximation, the response of the medium at a given
point r and moment 7 is assumed to be a linear function of electromagnetic fields at
any point # taken at all preceding moments ¢’ < 7 in accordance with the causality
principle,

’ .
Di(t,r) = / dt'/dr’s,-j(t,t’,r, ¥)E;(t',r), (1.9)
J—00 .

!
B,(t.r):/ dt'/dr',u,-j(r.t'.r.r’)Hj(t’.r'). (1.10)
-

Note that here we write the dependence B(H) instead of H(B). It is caused by the
symmetry of Maxwell’s equations observed with respect to the field pairs {E, D} and
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{H, B}. Following this symmetry, it is more natural to consider the dependence B(H),
rather than H(B). For this reason, the field H is commonly called the magnetic field, by
analogy with the electric field E, although it is actually an auxiliary quantity.

The functions &;;(¢, ¢, r, ¥') and p;;(¢, t',r, r') in Egs. (1.9) and (1.10) characterize
the efficiency of the material response transfer from one point of space and time to
another. For a medium that is homogeneous in space and time, the functions &;; and f¢;;
depend on the differences + — ¢ and r — ¥ In this case,

{
D,‘(f.i')Z/ dr'/dr’s,-j(r—t',r—r’)Ej(t’. r’), (1.11)

!
Bi(t,r) = / dt'/dr’ pipt =t v =P yH (' 1), (1.12)

By performing the Fourier transform,

1 .
G(f, I') — / G(w. k)el(k-r—ml)dw dk.

(2m)* .

of Dj, E;, B;, and H; in the (¢, r) space, we get the material relations for the fields in
the frequency—wavevector space (w, k),

Di(w, k) = g;j(w, k)E j(w, k), (1.13)
Bi(w, k) = pij(w, K)H, (. k). (1.14)

Here, €;j(w. k) and p;;(w, k) are the tensors of complex permittivity and permeability
given by

Eij(w. k) = / dll /dl‘[ sfj(tl.n)e‘“""'_‘”"’, (115)
JO 5

OO0
wij(@, k) =/ dn /d"l wij(ty, e En—en), (1.16)
0 .

wherety =t —t andri =r—r.

For an isotropic medium, the properties of which are identical in any direction,
&ij(w, k) and p;;(w, k) can be composed of the unit tensor §;; and the tensor k;k, since
they are the only two tensors of second rank formed from the vector 4. In this case, we

have
ek kides
8,'/'(60. k) = (aij — %) E;((z).. 1() + #8](0). k), (117)
kik; kik;
i@, k) = (a,-,- - k—z') i@, )+ =5 (@, B, (1.18)

Thus, among the nine components of each tensor &;; and p;;, only two components are
independent, namely &(w, k) and &|(w, k) for &;;, and (@, k) and p)(@, k) for 1;;. The
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meaning of those components becomes clear if we write D and B in vector form,

kx(Exk k(E -k
D(w, k) = &(w, k)% 2 El(w'k)(k—z)‘
k x (H x k) k(H - k)

B(w, k) = p(w, k) + mi(w, k)

k2 k2

According to these expressions, ¢(w, k) and [ (w, k) give the medium response to
longitudinal electric (E x k = 0) and magnetic (H x k = 0) fields, while &(w, k) and
(@, k) describe the response to transverse electric (E - k = 0) and magnetic (H - k = 0)
fields.

Temporal and spatial dispersion in metals

In the general case, both tensors ¢;; and 11;; depend on the frequency w and the wavevec-
tor k. Eventually, any electromagnetic pulse disperses by propagating in the medium, as
the Fourier components

G(w, k)ei(k-rﬁml)

with different w and & (that comprise the pulse in accordance with the Fourier transform)
propagate with different phase velocities w/k. Thus, materials with properties that
exhibit frequency and wavevector dependence are dispersive. The frequency dependence
of the tensors &;; and p;; describes the temporal dispersion of electromagnetic fields,
while the wavevector dependence gives the spatial dispersion.

In the optical range, metals feature very strong temporal dispersion. It arises due to the
inertia and friction of electrons in metals that make the polarization and magnetization
inertial with respect to electric and magnetic fields. Thus, the metal’s response at a given
moment 7 is dependent on the values of the electric and magnetic fields at all preceding
moments 1" < 7.

The time interval t =t — ¢’ for which the previous history still has a significant
effect is defined by the metal’s characteristic frequencies wg. It is obvious that, for
electromagnetic fields oscillating at a very high frequency @ > wj, the electrons do not
have enough time to form any significant polarization and magnetization. Eventually,
this results in very weak temporal dispersion with

6,‘,‘(([) — 00) = (S,'_j. u,‘j(a) — OO) - (S,‘j.

However, at frequencies @ below or close to the characteristic frequencies ws, the
temporal dispersion increases and becomes significant.

In general, the characteristic frequencies w are different for electric (wg) and mag-
netic (wyy) properties of metals. For diamagnetic and paramagnetic metals, the magnetic
characteristic frequencies wy usually lie far below the optical range, while the electric
frequencies wg vary from the near infrared to the ultraviolet [2]. Therefore, most dia-
magnetic and paramagnetic metals lose their magnetic properties early, before reaching
the optical range. Thus, starting from the optical frequencies, they feature

=y =1, (1.19)

with the temporal dispersion given by &;;(w).



