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FOREWORD

The hallmark of this series has always been the clarity with which the authors have
presented syntheses of previous work or recent advances impacting contemporary
analytic practice. This volume, Volume 3 in the series, is no different.

One difference, however, is that Volume 3 includes a section of four chapters
focusing on a single analytic issue: the use of multiple comparisons or contrasts.
The topic of multiple contrasts has generated considerable controversy. These
authors address the issues in a comprehensive manner. The reader will be well
situated in understanding these issues after reading these four chapters.

The remaining four chapters focus on developments involving a variety of
methodology choices. These range from qualitative research, multidimensional
scaling, logistic regression, to philosophy of science as related to the use of
multivariate statistics. Again in this section the series authors present lucid remarks
and thoughtful insights.

Bruce Thompson
Series Editor



CONTENTS

LIST OF CONTRIBUTORS

FOREWORD
Bruce Thompson

PART I: THE USE OF MULTIPLE CONTRASTS

PLANNED VERSUS UNPLANNED AND

ORTHOGONAL VERSUS NONORTHOGONAL

CONTRASTS: THE NEO-CLASSICAL PERSPECTIVE
Bruce Thompson

ANALYSIS OF VARIANCE AND
THE GENERAL LINEAR MODEL
Allen L. Edwards and Lynne K. Edwards

CHOOSING A MULTIPLE
COMPARISON PROCEDURE
Roger E. Kirk

GROUP CONTRASTS IN THE MULTIVARIATE CASE
Carl ] Huberty, Tungshan F. Chou, and Elisa B. Benitez

PART Il: OTHER ANALYTIC ISSUES

QUALITATIVE RESEARCH:
WHAT IT IS, WHAT IT ISN'T, AND HOW IT’S DONE
Margaret D. LeCompte and Judith Preissle

JUDGING VARIABLE IMPORTANCE IN
MULTIDIMENSIONAL SCALING
J. Douglas Carroll and Sharon L. Weinberg

vii

29

77

123

141

165



Vi

LOGISTIC REGRESSION:
AN INTRODUCTION
Janet C. Rice

THE CRITIQUE OF PURE STATISTICS:

ARTIFACT AND OBJECTIVITY IN
MULTIVARIATE STATISTICS
Stanley A. Mulaik

CONTENTS

191

247



PART |

THE USE OF MULTIPLE CONTRASTS







PLANNED VERSUS UNPLANNED
AND ORTHOGONAL VERSUS
NONORTHOGONAL CONTRASTS:
THE NEOCLASSICAL PERSPECTIVE

Bruce Thompson

Empirical studies of research practice (Edgington, 1974; Elmore & Woehlke, 1988;
Goodwin & Goodwin, 1985; Willson, 1980) indicate that the classical analysis of
variance (ANOVA) methods presented by Fisher (1925) several generations ago
remain popular with social scientists, notwithstanding withering criticisms of some
of these applications (Cohen, 1968; Thompson, 1986, 1991). Most users of
ANOVA-type methods (ANOVA, ANCOVA, MANOVA, MANCOVA—hereafter
labeled OVA methods) are aware that “[a] researcher cannot stop his analysis after
getting a significant F; he must locate the cause of the significant F”* for an omnibus
test (Huck, Cormier, & Bounds, 1974, p. 68). An omnibus test evaluates differences
across all groups in the way or effect as a set, and has degrees of freedom equal to
those available for the effect (e.g., in a 4 x 3 design the omnibus test for the
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4 BRUCE THOMPSON

four-level A way has 4 — 1 or 3 degrees of freedom). Gravetter and Wallnau concur:
“Reject Ho indicates that at least one difference exists among the treatments. With
k [means] = 3 or more, the problem is to find where the differences are” (1985, p.
423). Moore suggests that:

If we have statistical significance when we have only two groups, and thus only two means, we
can visually inspect the data to determine which group performed better than the other. But when
we have three or more groups, we need to investigate specific mean comparisons. (1983, p. 299)

Contrasts or comparisons can be used to test more specific hypotheses about
particular differences in means. A contrast is a coding vector that actually represents
a given hypothesis. Contrasts are usually developed such that the numbers consti-
tuting each contrast sum to zero. Table 1 presents examples for a study involving
a one-way six-level design, and let us say, two subjects per level.

For example, contrast C1 in Table 1 tests the null hypothesis that the dependent
variable mean of the two subjects in level 1 of the way equals the dependent variable
mean of the two subjects in level 2 of the way, ignoring the eight subjects in the
remaining cells of the design. Contrasts can be thought of as being applied to cell
means, or to the data for each subject (as illustrated for this design later in the
chapter). There are many types of contrasts, including those that are planned as
against unplanned, and those that are uncorrelated or orthogonal as against nonor-
thogonal.

Thus, unplanned (also called a posteriori or post hoc or unfocused) multiple
comparison tests (e.g., Scheffe, Tukey, or Duncan) are among the choices that can
be used to isolate means that are significantly different within OVA ways (also
called factors) having more than two levels. As Glass and Hopkins note, “MC
procedures are a relatively recent addition to the statistical arsenal; most MC
techniques were developed during the 1950’s, although their use in behavioral
research was rare prior to the 1960’s” (1984, p. 368).

Textbook authors tend to discuss unplanned comparison or contrast procedures
in somewhat pejorative terms. For example, Kirk speaks of the use of unplanned

Table 1. Example Contrasts for a
One-Way Six-Level Design

Contrasts
Level Cl 2 C3 c4 (o)
1 -1 -1 -1 -1 -1
2 1 -1 -1 -1 -1
3 0 2 -1 -1 -1
4 0 0 3 -1 -1
5 0 0 0 4 -1
6 0 0 0 0 5
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comparisons as “ferreting out significant differences among means, or, as it is often
called, data snooping” (1984, p. 360). The following quotations are additional
representatives of this genre of views:

Techniques that have been developed for data snooping following an over-all [significant
omnibus] F test . . . are referred to as a posteriori or post hoc tests. (Kirk, 1968, p-73)

The post hoc method is suited for trying out hunches gained during the data analysis. (Hays,
1981, p. 439)

Post hoc comparisons, on the other hand, enable the researcher to engage in so-called data
snooping by performing any or all of the conceivable comparisons between means. (Pedhazur,
1982, p. 305)

Prior to running the experiment, the investigator in our example had no well-developed rationale
for focusing on a particular comparison between means. His was a “fishing expedition.” . . .
Such comparisons are known as post hoc comparisons, because interest in them is developed
“after the fact”—it is stimulated by the results obtained, not by any prior rationale. (Minium &
Clarke, 1982, p. 321)

Post hoc comparisons often take the form of an intensive “milking” of a set of results—e.g., the
comparison of all possible pairs of treatment means. (Keppel, 1982, p. 150)

Post hoc comparisons are made in accordance with the serendipity principle—that is, after
conducting your experiment you may find something interesting that you were not initially
looking for. (McGuigan, 1983, p. 151)

Planned (also called a priori or focused) comparisons provide an alternative to
the OVA user who is interested in isolating differences among means. As Keppel
notes in his excellent treatment, decisions about which unplanned or planned
comparisons to employ in OVA research are complex and not always well under-
stood by researchers:

The fact that there is little agreement among commentators writing in statistical books and
articles concerning specific courses of action to be followed with multiple comparisons simply
means that the issues are complex, and that no single solution can be offered to meet adequately
the varied needs of researchers. Consequently, you should view the situation . . . with a realization
that you must work the problem out for yourself. (1982, p. 164)

The purpose of the present chapter is to acquaint the reader with some of these
complex issues.

Specifically, it is argued that planned comparisons (as against unplanned com-
parisons and certainly as against omnibus tests involving comparisons across more
than two groups) should be employed more frequently in OVA research. And the
relative utility of orthogonal (i.e., perfectly uncorrelated) contrasts as against
nonorthogonal or correlated comparisons is evaluated. However, prior to presenting
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these views as three general canons for analytic practice, a context for discussion
is established by first explicating three analytic premises.

THREE PREMISES REGARDING ANALYTIC PRACTICE

Premise 1. Experimentwise error inflation can be a serious problem, and classi-
cal unplanned tests were developed to control inflation of experi-
mentwise error rates.

Most contemporary researchers recognize that

t-tests performed on all possible pairs of means involved in the F-test . . . [to] reveal where
significant differences between means lie . . . is quite unacceptable methodology. The ¢-test was
not designed for this use and is invalid when so applied. . . . In spite of the patent invalidity of
t-testing following a significant F-ratio in the analysis of variance, or multiple #-testing in lieu
of the analysis of variance, this method has often been and continues to be used. (Glass & Stanley,
1970, p. 382)

However, not all researchers understand the basis for these conclusions. The
rationale for the conclusions involves the control of experimentwise Type I error
rate. A related rationale and the experimentwise error rate problem underlie the use
of unplanned comparisons, so the concept of experimentwise error rate merits some
discussion.

When a researcher conducts a study in which only one hypothesis is tested, the
Type I error probability is the nominal alpha level selected by the researcher, that
is, often the .05 level of statistical significance. The probability of making a Type
I error when testing a given hypothesis is called the testwise (TW) error rate.
Experimentwise (EW) error rate refers to the cumulative probability that one or
more Type I errors were made anywhere in the full set of all hypothesis tests
conducted in the study. Of course, in the case of a study in which only one
hypothesis is tested, the TW error rate exactly equals the EW error rate.

However, when several hypotheses are tested within a single study, the EW error
rate may not equal the nominal TW alpha level used to test each of the separate
hypotheses. If all hypotheses are perfectly correlated, then and only then will there
be no inflation of EW error rate, because in actuality only one hypothesis is really
being tested. If the hypotheses (e.g., the dependent variables) are at all uncorrelated,
then there will be at least some inflation of the experimentwise error probability
(EW)p). The inflation is at its maximum when the hypotheses are perfectly uncorre-
lated.

Witte provides an analogy that may clarify why this is so:

When a fair coin is tossed only once, the probability of heads equals 0.50—just as when a single
t test is to be conducted at the 0.05 level of significance, the probability of a type I error equals
0.05. When a fair coin is tossed three times, however, heads can appear not only on the first toss



Planned versus Unplanned and Orthogonal versus Nonorthogonal Contrasts 7

but also on the second or third toss, and hence the probability of heads on at least one of the
three tosses exceeds 0.50. By the same token, when a type I error can be committed not only
on the first test but also on the second or third test, and hence the probability of committing
a type I error on at least one of the three tests exceeds 0.05. In fact, the cumulative probability
of at least one type I error can be as large as 0.15 for this series of three ¢ tests. (1985, p. 236)

This coin flip example illustrates a worst-case inflation of EW error (analogized
as the flip of a head—H), because the results of each flip are perfectly uncorre-
lated with previous results (the coin presumably being unaware of or unaffected
by its previous behavior). Table 2 illustrates that although the probability of a
H on each flip of a fair coin is 50%, the probability of one or more Hs over three
flips is 87.5%. )

In fact, as Thompson (1988c) explains, the EW error rate in a study ranges
somewhere between the nominal TW alpha level (when only one test is conducted
or all hypotheses are perfectly correlated) and [1 — (1 — testwise alpha)] raised to
the power of the number of hypotheses tested (when more than one test is conducted
and the hypotheses are perfectly uncorrelated). Love (1988) presents the proof
underlying the formula for estimating maximum inflation of EW Type I error. As
an example involving estimation of EW error rate, if nine hypotheses were each
tested at the .05 level in a single study, the experimentwise error rate would range
somewhere between .05 and .37. Table 3 illustrates other calculations of maximum
EW error rates for various research situations.

Unplanned comparisons incorporate a correction (Games, 1971a, 1971b) that
minimizes the inflation of EW error rate that would otherwise accrue from conduct-
ing multiple hypothesis tests in a single study, especially given that omnibus

Table 2. All Possible Families of Outhmes
for a Fair Coin Flipped Three Times

Flip #

1 2 3
1 T T T
2 H T T
3 T H T
4 T T H
5 H H T
6 H T H
7. T H H
8. H H H

pof Honeach Flip  50% 50% 50%

Note.  “Probability of 1 or more Hs (TW error analog) in set of 3
flips = 7/8 = 87.5%, or where TW error analog = .50:
EWp=1-(1-.5)
=1-.5=1-.125= 875.
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Table 3. Maximum EW Type | Error Inflation

TW alpha Tests EW alpha

1-(1-0.05) ** 1=

1-(0.95) ** 1=

1-095 = 0.05000°
Range over TW alpha =.01

1-(1-0.01) ** 5= 0.04901

1-(1-0.01) ** 10= 0.09562

1-(1-0.01) ** 20= 0.18209
Range over TW alpha = .05

1—-(1-0.05) ** 5= 0.22622

1—(1-0.05) ** 10= 0.40126

1-(1-0.05) ** 20= 0.64151
Range over TW alpha =.10

1-(1-0.10) ** 5= 0.40951

1-(1-0.10) ** 10= 0.65132

1-(1-0.10) ** 20= 0.87842

Note. ™" =raise to the power of.

“These calculations are presented (a) to illustrate the implementation of the
formula step by step and (b) to demonstrate that when only one test is conducted,
the EW error rate equals the TW error rate, as should be expected if the formula
behaves properly.

hypotheses have already been tested. As Horvath notes, “Performing a multitude
of comparisons between the treatments raises the spectre of an increased overall
probability of a Type I error. Post F-test procedures must include some accommo-
dation for this danger” (1985, p. 223). As Kirk explains,

The principal advantage of this multiple comparison procedure over Student’s ¢ is that the
probability of erroneously rejecting one or more null hypotheses doesn’t increase as a function
of the number of hypotheses tested. Regardless of the number of tests performed among p means,
this probability remains equal to or less than alpha for the collection of tests. (1984, p. 360)

Snodgrass, Levy-Berger, and Haydon note that:

The post hoc tests for such multiple comparisons all adjust, to one degree or another, for the
increase in the probability of a Type I error as the number of comparisons in increased. They
differ in the degree to which the probability of a Type I error is reduced. (1985, p. 386)

Various authors discuss which tests are more conservative in this adjustment and
which are more liberal. The treatment by Keppel and Zedeck (1989, pp. 172-180)
is especially thoughtful.
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Premise 2. Balanced classical factorial OVA and planned orthogonal contrasts
both inflate EW error rates to their maximums.

EW error rate is at a maximum when the hypotheses tested within an experiment
are orthogonal or uncorrelated. For example, the tests of all possible omnibus
hypotheses in a factorial multiway ANOVA (called a factorial analysis) with equal
numbers of subjects in each cell (called a balanced design) are all perfectly
uncorrelated. This is why the sums of squares (SOS) for each effect plus the error
SOS add up to exactly equal the SOS total. Thus, in a 3 X 4 ANOVA in which the
one two-way omnibus interaction and both main effect omnibus hypotheses are
tested at the .05 level, the EW error rate would be about .14 [1 — (1 —.05)>=1 —
953 =1-.8574 = .1426].

Very few researchers and even fewer textbook authors consciously recognize that
inflation of EW error rates occurs in classical OVA methods testing omnibus effects
prior to the use of unplanned comparisons. One exception is the textbook written
by Glass and Hopkins (1984, p. 374), which acknowledges this dynamic in a
footnote. Miller (1966, 1977) also thoroughly explores these issues. The failure to
consciously recognize these dynamics can doubtless be traced in some measure to
paradigm influences (Thompson, 1989b).

As defined by Gage, “Paradigms are models, patterns, or schemata. Paradigms
are not the theories; they are rather ways of thinking or patterns for research” (1963,
p. 95). Tuthill and Ashton note that

A scientific paradigm can be thought of as a socially shared cognitive schema. Just as our
cognitive schema provides us, as individuals, with a way of making sense of the world around
us, a scientific paradigm provides a group of scientists with a way of collectively making sense
of their scientific world. (1983, p. 7)

But scientists usually do not consciously recognize the influence of their para-
digms. As Lincoln and Guba note:

If it is difficult for a fish to understand water because it has spent all its life in it, so it is difficult
for scientists . . . to understand what their basic axioms or assumptions might be and what impact
those axioms and assumptions have upon everyday thinking and lifestyle. (1985, pp. 19-20)

Even though researchers are usually unaware of paradigm influences, paradigms
are nevertheless potent influences in that they tell us what we need to think about,
and also the things about which we need not think. As Patton suggests,

Paradigms are normative, they tell the practitioner what to do without the necessity of long
existential or epistemological consideration. But it is this aspect of a paradigm that constitutes
both its strength and its weaknesses—its strength in that it makes action possible; its weakness
in that the very reason for action is hidden in the unquestioned assumptions of the paradigm.
(1975, p. 9)



