quantitative analysis

MM

CHARLES T. KENNER KENNETH W. BUSCH

Quantitative Analysis

Charles T. Kenner Southern methodist university Dallas, texas

Kenneth W. Busch baylor university waco, texas

Macmillan Publishing Co., Inc. NEW YORK

Collier Macmillan Publishers

Copyright © 1979, Macmillan Publishing Co., Inc. Printed in the United States of America

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the Publisher.

A portion of this material has been adapted from *Analytical Separations* and Determinations, by C. T. Kenner, copyright © 1971 by Macmillan Publishing Co., Inc., and from *Instrumental and Separation Analysis*, by C. T. Kenner (Columbus: Charles E. Merrill, 1973), copyright © 1973 by Bell & Howell Company.

Macmillan Publishing Co., Inc. 866 Third Avenue, New York, New York 10022

Collier Macmillan Canada, Ltd.

Library of Congress Cataloging in Publication Data

Kenner, C. T. Quantitative analysis. Bibliography: p. Includes index. 1. Chemistry, Analytic--Quantitative. I. Busch, Kenneth W., joint author. II. Kenner, C. T. Analytical separations and determinations. III. Title. QD101.2.K46 545 78-4160 ISBN 0-02-362490-6 Printing: 1 2 3 4 5 6 7 8 Year: 9 0 1 2 3 4 5 Dedicated to Bess Harrison Kenner

Preface

Modern analytical chemistry is the science of chemical measurements. Chemical measurements play an important role in many diverse disciplines, such as agriculture, geology, metallurgy, medicine, psychology, engineering, and environmental science, by providing information essential in solving practical problems. In its widest sense, analytical chemistry embraces the theory and practice of all the diverse means by which information of all forms may be obtained on the composition of matter. The content and scope of analytical chemistry is continually expanding as new techniques are developed to solve ever more challenging problems. To meet the need for increasingly more sophisticated knowledge regarding the composition of matter, analytical scientists are studying all facets of the chemical measurement process. Indeed, research on the development of new means of obtaining chemical information on the composition of matter may more appropriately be termed analytical science rather than analytical chemistry, because its progress depends on a combination of disciplines, including chemistry, physics, engineering, and applied mathematics.

The present work is an attempt on the part of the authors to meet the needs of students and teachers for an introductory textbook covering some of the more important aspects of modern analytical chemistry. Every effort has been made to produce a balanced, readable text flexible enough to be adaptable to the wide range of analytical programs currently being offered at colleges and universities throughout the country. In this respect, the text should be appropriate for programs where only a single course in analytical chemistry is offered and where the instructor wishes to discuss some basic instrumental methods as well as gravimetric and volumetric principles. Furthermore, we anticipate that this text will also prove useful at institutions that offer a separate course for the large number of students in related disciplines, such as biology, geology, medicine, clinical chemistry, and science education. Such students need some basic knowledge of instrumentation but not at the level or depth needed by chemistry majors who plan to become practicing chemists. Our philosophy in writing the instrumental portion of the book has been to emphasize the principles and capabilities of instruments to solve analytical problems rather than to stress their design and construction.

Because of the wide scope of modern analytical chemistry, it is difficult to select the subjects and instruments to discuss as well as to decide on the amount and level of material that should be included in an introductory text. Comprehensive coverage of basic quantitative analysis, separation science, and instrumental methods in one book is neither desirable nor practical; thus, this text is necessarily a compromise. Although there is no formal separation into parts, the first fifteen chapters in the text deal with material ordinarily covered in beginning analytical courses, stressing volumetric and gravimetric analysis. Chapters 16 through 27 cover instrumental methods and introductory separation science. Chapter 28 discusses and illustrates the most widely used manual laboratory techniques. The detailed table of contents gives a complete outline of the text, which will be helpful both to students and to instructors. Each chapter is written so that the material may be covered in any sequence desired by the instructor.

We believe that we have included sufficient material for the student to understand each technique and instrument without having a detailed knowledge of all of its operational aspects. We have selected subjects and instruments that are in widest use in commercial, educational, and research laboratories. As examples, we have given preference to volumetric analysis over gravimetric, and have included radiochemical techniques and electrophoresis instead of thermal and high-frequency methods. A short introduction to organic chelates and a short review of inorganic complexes are included for those students who have not completed a course in organic chemistry. This material is needed to understand extraction, which, in turn, is needed to understand liquid–liquid and gas–liquid chromatography. We have stressed all types of chromatography and all types of absorption photometry, together with flame atomic spectroscopy, potentiometric measurement of hydrogen and other ions, and automated analyses by giving more details of these techniques than is given for subjects such as x-ray, nuclear magnetic resonance, mass spectrometry, and emission spectroscopy.

No laboratory directions are given in the text, although the theoretical basis of typical determinations is discussed. The authors believe that most instructors prefer to design their own experiments, and that they normally modify the experiments in any text by issuing complete mimeographed instructions suited to their own needs. The students prefer to use the inexpensive or free instructions so that they will not have to bring their textbooks into the laboratory.

We wish to express our appreciation to the many students who have aided in the preparation of the book through their comments and class notes during the preparative stages. Thanks are expressed to Dr. George Howard Luttrell, Jr., who prepared Chapter 25 on automated analysis, and Rev. Walter Ross Purkey, who is responsible for Chapter 27 on microelectronics. We are deeply grateful to Mrs. Shirley McLean, who typed the manuscript with a minimum of errors. Our thanks also go to our wives, Bess and Marianna, for their forbearance during the preparatory stages and for sharing in the task of proofreading the manuscript.

> C. T. K. K. W. B.

Contents

1 Introduction

Types and Methods of Analysis	1
Steps in an Analysis	3
Obtaining the sample	3
Selection of the method of determination	5
Measurement of the sample	6
Selection of proper sample weight	6
Weighing by difference	6
Aliquoting procedure	7
Solution of the sample	8
Water	8
Nonoxidizing acids	8
Oxidizing acids	8
Fusion	9
Organic solvents	9
Separation and measurement of the constituent(s) being	
determined	10
Problems	10

2 The Analytical Balance 11

History of Weighing	11
Mass and Weight	12
Theory of Weighing	13
The equal-arm mechanical balance	13
The substitution mechanical balance	15
Electronic balances	17
Analytical Weights	20
Weighing Errors	21
Problems	23

3 Methods of Expressing	
Concentrations of	
Solutions	24
Methods of Expressing Analytical Concentrations	25
Weight-volume (w/v)	25
Percentage methods	26
Dilution ratio	27
Molar (m) and formal (f) concentrations	28
Normal (n) concentration	30
Titer methods	31
Equivalent Weights	33
Equivalent weights for reactions in which there is no electron	
transfer	36
Neutralization	36
Precipitation	38
General method	39
Equivalent weights for oxidation-reduction reactions	39
The concept of the analytical reaction	41
Equivalent weights in analytical sequences	42
Conversion from One Method to Another	43
Weight-volume to molar or normal	43
Molar to normal and vice versa	44
Molar or normal to titer	45
Weight percent (w/w) to molar or normal	45
Problems	46

4 Reliability of Measurements

48

.4

Significant Figures	48
Accuracy, Precision, and Errors	51
Classification of Errors	53
Types of determinate errors	55
Types of indeterminate or random errors	56
Statistical Treatment of Data	56
Mean and standard deviation	57
Confidence limits	57
Student's t	59
Comparison of averages	59
Rejection of data	61
The Q test	62

Practical Considerations	63
Methods of expressing precision	63
Average deviation and relative average deviation	63
Methods of calculating standard deviations	64
Confidence limits	65
Method using student's t value	66
Method using range and t_w	66
Problems	66

5 Calculations of Gravimetric Analysis 69

Gravimetric (Chemical) Factors	69
Calculation of Percentage by Weight (General)	73
Calculation of Percent of Constituent for Gravimetric Analysis	73
Factor Weight Samples	74
Quantity of Reagent Required for a Given Reaction	75
Indirect Analysis	77
Problems	79

6 Calculations of Titrimetric Analysis

Standards 83 Standard Solutions 84 Calculation of Percent of Constituent from Titrimetric Analysis 86 Direct titration 88 Indirect titration 89 Optimum Weight of Sample for Standardizations 89 Maximum Weight of Unknown Sample to Be Weighed 90 Problems 92

7 E	Equilibrium
-----	-------------

The Activity Concept	94
Equilibrium Constants	97
Factors That Affect an Established Equilibrium	99
Applications of the Equilibrium Constant	101
Ionization constants	101
Calculation of ionization constants from percent of	
ionization and molar concentration	102
Calculation of ionic concentrations from K and M	103

82

Solubility product	105
Calculation of K_{sp} from solubility	106
Calculation of solubility from K_{sp}	106
Calculation of amount of ion or compound left	
unprecipitated	108
Concentrations of species present at a given hydrogen ion	
concentration	109
Factors that affect solubility at a given temperature	111
Effect of diverse ions on solubility	111
Effect of hydrogen ion concentration on solubility	111
Effect of complex formation on solubility	113
Separations by fractional precipitation	115
Problems	116

8 Theory of Precipitation 120

Formation of Precipitates	121
Particle Size of Precipitates	122
Growth of an Individual Particle of a Precipitate	125
Impurities in or on Precipitates	126
Adsorption	126
Postprecipitation	128
Occlusion	129
Coprecipitation	129
Purification of Precipitates	130
Types of Precipitates	131
Rules for Precipitation	132
Precipitation from Homogeneous Solution	132
Types of reactions	133
Control of pH	133
Generation of other reagents	134
Uses of precipitation from homogeneous solution	135
Precipitation of hydrous oxides	135
Production of relatively large crystals	135
Study of coprecipitation	135
Problems	136

9 Gravimetry and Precipitation Titrimetry 137

Gravimetry	137
Determination of sulfate as barium sulfate	137
Determination of chloride as silver chloride	138
Determination of iron as ferric oxide	140

The Volhard method	147
Problems	148

10 Neutralization 149

Acids and Bases	149
Acidity and Basicity	152
Relationships Among p_cH , $[H^+]$, p_cOH , $[OH^-]$, K_w , and pK_w	153
Acid-Base Titrations	154
Conditions existing in titrated solution at the equivalence point	154
Concentration of salt at the equivalence point	154
Solutions of salts	155
Hydrolysis	155
p _c H of solutions of salts	157
Salts of strong acids and strong bases	157
Salts of strong bases and weak acids	157
Salts of weak bases and strong acids	159
Salts of weak bases and weak acids	161
Amphiprotic salts	161
p _c H of solutions of salts containing excess acid or base	163
Solutions of a weak acid and one of its salts	163
Solutions of a weak base and one of its salts	165
Titration curves	167
Titration curve for strong acid by strong base	167
Titration curve for weak acid by strong base	170
Titration curve for weak base by strong acid	173
Feasibility of titrations	174
Titration of polyprotic acids and mixtures of acids	175
Indicators	178
Explanation of buffer action	178
Range of indicators	179
Differential Titration of Alkalies	181
Buffers	185
Types of buffers	186
Explanation of buffer action	186
Level and range of buffers	188
Capacity of buffers	189
Preparation of buffer solutions of definite p _c H and definite	
total molar concentration	192

200

X	l	v	

Nonaqueous Titrations	194
Solvents	194
Titrations	195
Problems	196

11 Oxidation–Reduction Theory

Balancing Oxidation–Reduction Reactions	201
Equivalent Weights in Oxidation-Reduction Reactions	205
Electrochemical Theory of Oxidation-Reduction	205
The Nernst Equation	208
Effect of p _c H upon the Potential of Half-Cells	212
Relationship Between Standard Potentials and the Equilibrium	
Constant	213
Typical Curve for Oxidation-Reduction Titrations	215
Calculation of Potentials at Various Points on the Titration	
Curve	217
Before the equivalence point	217
At the equivalence point	218
Beyond the equivalence point	219
Calculation of Concentrations at Various Points on the	
Titration Curve	220
Before the equivalence point	220
At the equivalence point	220
Oxidation-Reduction Indicators	227
Problems	228

12 Oxidation–Reduction Titrations

Permanganate Methods	231
Standardization	232
Determination of calcium in limestone by the	
oxalate-permanganate method	232
Dichromate Methods 2	234
Determination of iron in an iron ore by titration with	
	235
Cerium(IV) (Ceric) Methods 2	237
Methods Involving Iodine 2	238
Indirect iodine methods involving titration with thiosulfate 2	239
	239
Determination of copper by the indirect iodine method 2	241

13 Potentiometric Measurements

244
245
245
246
247
247
249
249
249
250
252
253
254
256
257
258
259
261
261
263
264

14 Compleximetry 267

Characteristics of Coordination Compounds	267
Stability and Instability Constants	270
Compleximetric Titrations	272
Titration of chloride with mercuric nitrate	272
Titration of cyanide with silver nitrate	273
Titration with ethylenediaminetetraacetic acid (EDTA)	274
Titration methods	275
Direct titration	275
Indirect or back titration	275
Displacement of a metal ion	275
Titration of hydrogen liberated	275
Titration of anions	275
Indicators	276
Standardization	276
Determination of total hardness in water	277
Determination of calcium and magnesium in limestone	278

281

298

Titration for sum of calcium and magnesium	278
Titration for calcium only	278
Calculations	279
Problems	279

15	Analytical Uses of
	Reaction Rates

Some Aspects of Chemical Kinetics	282
Enzyme kinetics	286
Analytical Applications	288
Single-component determinations	289
Differential methods utilizing the initial rate	289
Integral methods	290
Integral methods maintaining constant composition	292
Multicomponent determinations	292
Some Typical Determinations	294
Problems	296

16 Absorption Methods in the Visible and Ultraviolet

The Nature of Radiant Energy	299
The Absorption Process	300
Nomenclature	301
Fundamental Laws of Absorbance	302
The Bouguer or Lambert law	302
The Beer law	303
The combined Bouguer-Beer law	304
Deviations from Beer's law	304
Photometric error	306
Visual Colorimetric Methods	308
The dilution method	308
The standard series method	308
Photometric Instruments	309
Radiant energy sources	309
The optical system	310
The wavelength selectors	311
Filters	311
Monochromators	313
Light-sensitive devices	315
Vacuum-tube photocells (photoemissive cells)	315
Barrier-layer cells (photovoltaic cells)	316
Photomultiplier tubes	318
Commercial Instruments	318

Photometric Methods	318
Absorption spectra	318
Determination of concentration from absorbance	319
By calculation	319
Calibration curves	320
Determination of pH and pK	322
Determination of the formula of a complex	324
The mole-ratio method	324
The method of continuous variations	325
Multicomponent analysis	326
Photometric titrations	330
Turbidimetry and Nephelometry	331
Problems	332

17 Infrared and Raman
Spectrometry340

Infrared Spectrophotometry	341
Absorption of infrared radiation	341
Principles of infrared instrument design	346
Sources	347
Detectors	347
Wavelength selectors	349
Sample handling	349
Use in analysis	351
Raman Spectroscopy	352
Theory	352
Principles of Raman instrumentation	354
Applications and comparisons	355
Problems	356

18 Analytical Flame Spectrometry

The Production of an Atomic Vapor	359
The premix burner	360
The analytical flame	361
Atomization	362
Spectroscopic Observation of the Atomic Vapor	363
Atomic emission spectrometry	363
Instrumental aspects of atomic emission spectrometry	364
Atomic absorption	366
Instrumental aspects of atomic absorption	368
Hollow cathode discharge lamp	369

379

The role of the monochromator	370
Elimination of interfering flame emission	370
Nonflame devices	371
Quantitative Determinations Based on the Spectroscopic	
Observation of an Atomic Vapor	373
Selection of the analytical line	373
Optimization	373
Instrument calibration	374
Interferences	375
Comparison of Atomic Emission and Atomic Absorption	377
Problems	377

19 Miscellaneous Optical Methods

Origin of Spectra	379
Fluorescence	382
Fluorescence spectra	382
Instrumentation	384
Applications	384
Emission Spectroscopy	385
Excitation methods	386
Electrodes and sample preparation	387
Instrumentation	388
Applications	391
Qualitative identification	391
Quantitative analysis	391
X-ray Methods	392
Absorption methods	393
Fluorescent methods	395
X-ray diffraction methods	396
Problems	398

20 Electrolytic Methods: Electrogravimetry, Polarography, and Coulometry 400

Electrogravimetry	401
Decomposition potential	401
The Theoretical counterpotential	401
The overvoltage	404

Separation and determination of metals by electrodeposition	404
Controlled cathode potential	406
Factors that affect electrolytic deposits	407
Formation of complex ions	407
Current density	407
Agitation	408
Evolution of gas	408
Polarography	408
Basic principles	408
Electrodes	410
The limiting current	411
The residual current	412
The migration current	412
Adsorption currents	412
The diffusion current	412
The half-wave potential	413
Analytical applications	413
Evaluation methods	414
Direct comparison	414
Standard addition	414
Internal standard	414
Absolute method	415
Coulometry	415
Coulometers	416
Coulometric titrations	417
Problems	419

21 Solvent Extraction

Types of Metal Extraction Systems	422
Principles of Solvent Extraction	423
The distribution law	423
Efficiency of extraction	424
The sequence of the extraction process	426
Formation of a distributable species	426
Distribution of the distributable species	427
Interactions in the organic phase	427
Effect of pH on Chelate Extraction Systems	427
Extraction Techniques	431
Batch extractions	431
Stripping or back-extraction	431
Continuous extraction	432
Countercurrent extraction	433
Extraction of solids	433
Advantages and Disadvantages	434
Problems	434