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INTRODUCTION

CHRISTINE ORENGO

Institute of Structural and Molecular Biology, University College London, London,
United Kingdom

ALEX BATEMAN

European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton,
United Kingdom

The protein machine is a triumph of nature that puts any man-made nanotech-
nology into the deepest shade. Without the myosin motor proteins that drive the
actin filaments along the myosin tails in muscle tissue we cannot move. Without
the rotating motor protein complex FO/F1 ATPase we cannot generate chemical
energy in the form of ATP that is so essential for all life. Every cell in our bodies
is a whirring biochemical machine of immense complexity. We are still ignorant
of the exact molecular function of many, or perhaps most, of the protein cogs in
this machine. To understand all the molecular components of the cell and how
they fit together remains one of the greatest challenges for biology.

Charles Darwin had no idea of the molecular complexity that lay in the heart
of every cell. However, his theory of evolution by natural selection has given
us a framework that allows us to understand how the complexity of the cell and
its protein machinery could have arisen from simpler preexisting proteins. By
Jooking at the amino acid sequence of different proteins we can see that nature’s
major source of innovation is the duplication and subsequent mutation of proteins.
The five human hemoglobin genes that share a common function to transport
oxygen around the blood have all arisen from a single ancestral gene during the
evolution of animals over the last 800 million years. Each of these hemoglobin
genes has small differences in sequence and this causes differences in their affinity
for oxygen and other properties. The set of proteins that have arisen from a
common ancestor through the process of evolution are known as a protein family.
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viii INTRODUCTION

The concept of a protein family as an evolutionary entity has immense implica-
tions for understanding biology. Related proteins arising from a common ancestral
protein often share a common function. If we can identify a protein in a newly
sequenced organism that belongs to the hemoglobin family, then we can infer
that its function is likely to be to transport oxygen. Despite having carried out
no experiments on this new protein, we can learn something about its function
from its amino acid sequence. By carrying out detailed molecular experiments on
proteins from a few model organisms, we might hope to understand all proteins
in the millions of species on earth.

Our ability to correctly identify proteins that belong to the same family is
essential to understanding biology. Our ability to do this has improved immensely
over the past 40 years. These improvements have been due to three different fac-
tors: (i) improvements in the algorithms and statistics associated with sequence
alignment, (ii) the growth in the number of protein sequences, and (iii) the
increase in the availability of protein structures.

1 IMPROVEMENTS IN ALGORITHMS FOR SEQUENCE ALIGNMENT

Our ability to see relationships between proteins has been greatly enhanced not
just by the wealth of sequence and structures available to us. The sophisticated
algorithms and statistics that have been developed allow us to determine which
similarities between protein sequence and structures are of true homology and
which reflect only chance similarities. While sequence comparison software such
as BLAST and Fasta made comparison of sequences accessible, techniques such
as profiles, hidden Markov models, and fold recognition gave experts the ability
to find relationships between proteins whose common ancestor may have existed
more than a billion years ago. Although algorithmic developments that have been
extensively covered elsewhere are not the primary focus of this book, we applaud
the computational scientists and mathematicians who have given us the tools to
unlock the mysteries of the cell’s protein machine.

2 THE GROWTH OF PROTEIN SEQUENCES

International genome projects have brought a wealth of diverse protein sequences
and this means that in the last 10 years or so there have been significant increases
in the number of protein and nucleic acid sequences available. Protein sequence
databases now hold more than 20 million sequences. This also gives rise to a
large increase in the number of known protein families. For example, automatic
classification of protein families suggests that we now have representatives from
more than a million families. Protein family classifications such as PhyloFacts
or PANTHER (described by Sjolander in Chapter 6), which focus on specific
sequence repositories and involve some limited curation, now contain around
93,000 and 71,000 families, respectively.
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However, many proteins (nearly 80% in eukaryotes) are multidomain and the
million or more protein families currently identified are built up from different
combinations of domains. In this sense, domains are the primary building blocks
of life and not surprisingly there are far fewer domain families than protein
families. Furthermore, there has been a much slower increase in the numbers
of domain families—especially over the last 5 years. The most comprehensive
domain family resource, Pfam (reviewed by Bateman in Chapter 3) currently
identifies nearly 14,000 families. Moreover, many new Pfam families tend to be
quite small and species specific, suggesting that we may be close to knowing a
significant proportion of the major domain families in nature. With the growth of
next generation sequencing, it is likely that we will soon see improved sampling
of unusual taxonomic groups and in the next 20 years we are likely to have
access to a true sampling of protein space.

Alongside the activities of the international genome sequencing initiatives,
worldwide structure genomics consortia have attempted to increase the structural
coverage of domain and protein families. Since the structure of a protein is
usually much more highly conserved during evolution than the sequence, this
data is valuable for detecting remote homologies and has been exploited by
resources such as SCOP and CATH to trace far back in evolution and capture
universal families common to all kingdoms of life. There appear to be only a
few hundred of these, depending on the criteria used to identify them, and some
have been extensively duplicated and are highly populated.

By exploiting structural data we see that there are currently less than 3000
domain superfamilies covering nearly 60% of the domain sequences from com-
pleted genomes. The term “‘superfamily” denotes a broad grouping of relatives
(i.e., including all paralogs and orthologs) even from very divergent species, and
remote relatives can have rather different structures and functions within some
superfamilies (see, e.g., the HUP superfamily described in Chapter 8). Structural
data can also be used to merge domain “families” identified using purely sequence
data—for example, Pfam often recognizes “clans” (comprising remotely related
Pfam families) in this manner.

The relatively small number of domain superfamilies relative to protein fam-
ilies and the fact that we have nearly classified a complete set of these domain
“building blocks” mean that we can begin to understand the assembly of diverse
proteins during evolution from different domain combinations and start to derive
rules for predicting the likely functional contributions of the domains or how
their roles may change in different contexts. This will hopefully allow us to
move toward a domain grammar of function that exploits our understanding of
the evolutionary changes occurring in different domain families to build a picture
of how the complete protein, containing these domains, may function.

The data from some of the structural genomics initiatives adds further support
to the hypothesis that we already know a large proportion of all major domain
families. For example, the NIH-funded PSI structural genomics initiatives in the
States deliberately sought to identify new domain families for which there was no
structural data. In their second phase (PSI12: 2005-2010) they primarily focused



X INTRODUCTION

on new, structurally uncharacterized families in Pfam and related classifications.
Powerful HMM-HMM strategies were employed to discard any that were, in
fact, distantly related to known families (e.g., in SCOP or CATH) and those
remaining were targeted for structure determination. However, despite their lack
of sequence similarity to known families, it became increasingly clear as the
structures were solved that most of the families were simply divergent relatives
of existing families in SCOP or CATH. Only about 20% of them represented
completely novel families with novel structures, and many of these novel families
were very small, species or subkingdom specific, with less than 100 relatives.

As reported in Chapter 5, some resources (SUPERFAMILY, Gene3D) derive
sequence patterns (or HMMs) for domain superfamilies in SCOP and CATH
and use these to predict domain relatives in sequences from completed genomes.
Their data suggests that the population of superfamilies is very uneven. The
trends follow scale-free behavior whereby most superfamilies are rather small,
that is, comprising less than 500 relatives while a few (~200) are very large
(having >5,000 relatives). This tiny percentage of superfamilies (<5% of all
superfamilies) accounts for nearly two thirds of all structural domains classified.

Many are universal and highly promiscuous, combining with multiple other
families to give different multidomain combinations. They support a wide range
of functions, either by performing a generic role in different protein contexts or by
evolving new functions of the domain itself, that is, through residue mutations and
structural divergence. For example, changes in the nature and location of catalytic
residues in the active site have been observed. Structural variations can alter the
active site geometry to enable binding of different substrates and/or reshape
surface features promoting changes in domain or protein interaction partners.

As the sequence and structure data grows—and especially as structural
genomics initiatives target new families—the mechanisms by which domains
change during evolution will become clearer as also the extent to which they
fuse with different partners to give new proteins. However, the coverage of
current classifications and the insights already derived from them motivated us
to compile this book now, both to convey some of the current knowledge and to
present some fascinating examples of the role families play in creating the rich
diversity of life we see around us and study as biologists.

3 MOTIVATION FOR THE BOOK

The idea that we may now have accumulated knowledge on all the major protein
domain families is borne out by the fact that a large proportion (between 70%
and 90%) of domain sequences from most completed genomes can be classified
in curated domain families in Pfam. In addition, the technologies for recognizing
distant relatives of existing families and confidently assigning new families have
matured over the last decade with powerful strategies such as profile—profile
comparisons identifying incredibly distant and divergent relatives, some of which
may have undergone significant structural changes as well.
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Protein and domain family classifications are becoming increasingly and rou-
tinely used to annotate newly sequenced proteins, for example, from meta-genome
studies or completely sequenced genomes. So a review of protein families—how
to identify them and what the analyses of these families tells us about the evolu-
tion of the proteins and their impact on the phenotypic repertoire of the organisms
they are found in—seemed both timely and valuable for biologists wishing to
use these resources to infer functions for their proteins of interest.

There are now many protein, domain, and motif classification resources, some
very comprehensive (e.g., Pfam or SCOP) and others only focusing on specific
families (e.g., related to a disease or a particular functional activity) or biolog-
ical processes (e.g., kinases). In order to give a flavor of the technologies used
for finding families and the insights they bring, we decided to divide the book
into three sections. The first covers strategies for identifying and characterizing
the families. Since we felt that it would be unrealistic to capture in a single
book the different technologies and data exploited and presented by all family
classifications, we invited contributions from authors of the larger scale, more
comprehensive resources who could provide overviews of the challenges and
strategies related to their own types of classification. We decided to organize the
book into three sections. The first section titled “Concepts Underlying Protein
Family Classification™ of this book reviews the major strategies for identifying
homologous proteins and classifying them into families. In the second section
titled “In-Depth Reviews of Protein Families” of this book, there is a collec-
tion of reviews on some fascinating superfamilies for which we have substantial
amounts of data (sequences, structures, and functions) allowing us to trace the
emergence of functionally diverse relatives and providing structural insights into
the mechanisms modifying their functions. Chapters in the third section titled
“Review of Protein Families in Important Biological Systems” review groups of
families associated with a particular biological theme (e.g., the protein families
involved in the cytoskeleton, reviewed by Baines and coauthors).

We would like to thank all of the authors who contributed to this book. We
have been delighted that so many experts from the world over were able to devote
their time to create this collection of knowledge. We believe that this work will
be useful for student and group leaders alike and hope that you enjoy reading
the book as much as we have.
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